Optimization of Data Warehouse Architecture to Improve Information System Performance

数据仓库 计算机科学 数据库 吞吐量 体积热力学 调度(生产过程) 物化视图 表(数据库) 过程(计算) 数据提取 数据转换 仪表板 数据挖掘 实时计算 视图 数据库设计 操作系统 工程类 物理 政治学 法学 量子力学 无线 运营管理 梅德林
作者
B Suriansyah,Amil Ahmad Ilham,Ady Wahyudi Paundu
标识
DOI:10.1109/iccosite57641.2023.10127721
摘要

Data growth is increasing day by day, so the data stored in the data warehouse is increasingly piling up. When data is displayed on the dashboard or information system, performance is slow because the process of loading queries from the data warehouse to the information system will access all the data stored in the data warehouse tables. This causes the speed of loading data on information systems to decrease, so optimization is needed in the data warehouse so that the load process becomes lighter even though data growth is increasing. In this research, a scheduling algorithm will be created in Hadoop whose job is to execute the transform extraction process and load summary data into several tables. Aims to streamline and optimized the Extract, Transform, Load (ETL) process to the data warehouse and reduce the volume of data in one table, then will be indexed according to the primary key in each table so that when data is joined to several tables it can be executed quickly. After testing by querying data with the same goal but different tables, namely tables that are optimized and unoptimized produce a query time of 1.418 seconds, while tables unoptimized have a query time of 2.418 seconds. Well as testing the speed of loading data into the information system by comparing the throughput of systems that are optimized and those that are unoptimized have an average throughput difference of 85%. With these results, it can be concluded that the speed in loading data into the information system has been successfully optimized by looking at this comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
参上完成签到,获得积分10
1秒前
mingjie完成签到,获得积分10
1秒前
yam001完成签到,获得积分10
1秒前
aaaaa发布了新的文献求助10
1秒前
2秒前
牧紫菱完成签到,获得积分10
2秒前
3秒前
研友_RLN0vZ发布了新的文献求助10
3秒前
3秒前
3秒前
神勇的雅香应助001采纳,获得10
4秒前
研友_V8RDYn完成签到,获得积分10
4秒前
zzznznnn发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
FFFFFFF应助晓军采纳,获得10
7秒前
wanci应助艺玲采纳,获得10
7秒前
jfc完成签到 ,获得积分10
7秒前
香蕉觅云应助月白采纳,获得10
7秒前
思源应助mmx采纳,获得10
7秒前
Diaory2023完成签到 ,获得积分0
7秒前
雪小岳完成签到,获得积分10
8秒前
李小明完成签到,获得积分10
8秒前
8秒前
白小白发布了新的文献求助10
9秒前
thchiang发布了新的文献求助30
9秒前
Crsip关注了科研通微信公众号
9秒前
乐乐应助camellia采纳,获得10
10秒前
小二郎应助无情的白桃采纳,获得10
10秒前
10秒前
研友_Zb1rln完成签到,获得积分10
12秒前
健身boy完成签到,获得积分10
12秒前
盛京烟雨行完成签到 ,获得积分10
12秒前
12秒前
心灵美的大山完成签到,获得积分10
12秒前
12秒前
yuan发布了新的文献求助10
13秒前
诚心八宝粥完成签到,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759