化学
电解质
盐(化学)
动力学
电化学
交换电流密度
水溶液
氢
电化学动力学
无机化学
化学工程
物理化学
有机化学
电极
塔菲尔方程
工程类
物理
量子力学
作者
Yang Zhao,Xudong Hu,Galen D. Stucky,Shannon W. Boettcher
摘要
Concentrated water-in-salt electrolytes (WiSEs) are used in aqueous batteries and to control electrochemical reactions for fuel production. The hydrogen evolution reaction is a parasitic reaction at the negative electrode that limits cell voltage in WiSE batteries and leads to self-discharge, and affects selectivity for electrosynthesis. Mitigating and modulating these processes is hampered by a limited fundamental understanding of HER kinetics in WiSEs. Here, we quantitatively assess how thermodynamics, kinetics, and interface layers control the apparent HER activities in 20 m LiTFSI. When the LiTFSI concentration is increased from 1 to 20 m, an increase in proton activity causes a positive shift in the HER equilibrium potential of 71 mV. The exchange current density, io, derived from the HER branch for 20 m LiTFSI in 98% purity (0.56 ± 0.05 μA/cmPt2), however, is 8 times lower than for 20 m LiTFSI in 99.95% (4.7 ± 0.2 μA/cmPt2) and 32 times lower than for 1 m LiTFSI in 98% purity (18 ± 1 μA/cmPt2), demonstrating that the WiSE's impurities and concentration are both central in significantly suppressing HER kinetics. The ability and applicability of the reported methods are extended by examining additional WiSEs formulations made of acetates and nitrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI