MetaFormer Baselines for Vision

安全性令牌 计算机科学 可分离空间 人工智能 数学 计算机网络 数学分析
作者
Weihao Yu,Chenyang Si,Pan Zhou,Mi Luo,Yichen Zhou,Jiashi Feng,Shuicheng Yan,Xinchao Wang
出处
期刊:Cornell University - arXiv 被引量:19
标识
DOI:10.48550/arxiv.2210.13452
摘要

MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, without focusing on token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves >80% accuracy on ImageNet-1K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of >81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85.5% at 224x224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with GELU yet achieves better performance. We expect StarReLU to find great potential in MetaFormer-like models alongside other neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
好多鱼发布了新的文献求助10
1秒前
snowy完成签到,获得积分10
1秒前
科研通AI5应助疯狂的电脑采纳,获得10
2秒前
失眠海云发布了新的文献求助30
2秒前
痴情的博超应助小张采纳,获得10
2秒前
星辰大海应助不过尔尔采纳,获得10
3秒前
领导范儿应助张凤采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
Yy完成签到,获得积分10
4秒前
搞怪夏天完成签到,获得积分10
4秒前
复杂寄文发布了新的文献求助10
5秒前
FashionBoy应助精明的期待采纳,获得10
5秒前
ltt完成签到,获得积分10
6秒前
6秒前
SciGPT应助夜无疆采纳,获得10
6秒前
6秒前
6秒前
snowy发布了新的文献求助10
6秒前
充电宝应助也许,采纳,获得10
7秒前
7秒前
走着走着就散了完成签到,获得积分10
7秒前
7秒前
科研ray发布了新的文献求助10
7秒前
科研通AI5应助阳光山槐采纳,获得10
8秒前
木鱼发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
DamenS发布了新的文献求助10
10秒前
文静香岚关注了科研通微信公众号
10秒前
11秒前
向前发布了新的文献求助10
12秒前
12秒前
nicheng完成签到,获得积分20
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574367
求助须知:如何正确求助?哪些是违规求助? 3144080
关于积分的说明 9455303
捐赠科研通 2845630
什么是DOI,文献DOI怎么找? 1564470
邀请新用户注册赠送积分活动 732281
科研通“疑难数据库(出版商)”最低求助积分说明 718991