亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHEEPFEARNET: Sheep fear test behaviors classification approach from video data based on optical flow and convolutional neural networks

卷积神经网络 性情 人工智能 计算机科学 机器学习 人工神经网络 五大性格特征 光流 模式识别(心理学) 心理学 人格 图像(数学) 社会心理学
作者
Cafer Tayyar Bati,Gazel Ser
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107540-107540 被引量:1
标识
DOI:10.1016/j.compag.2022.107540
摘要

Determining the temperament related traits of sheep, such as the coping style with various stress factors such as people, a new environment and social isolation, is essential in terms of improving animal welfare and increasing productivity. The classification of sheep according to their behavioral responses to the mentioned stress factors is evaluated by objective or subjective methods by expert observers. However, visual examinations that rely on human observation are more likely to make mistakes and are time consuming. Therefore, it is important to make this process faster, easier and more reliable. The phenotypic and genetic heritability of temperament traits in sheep are examined using behavioral tests such as arena and isolation box. The spatial features of the temperament classes in these tests are generally similar. At the same time, since the behavior traits are composed of time series, defining or classifying these features with image-based approaches can present challenges. In this study, we propose a video-based approach to overcome this challenge, using videos of behavioral traits obtained from fear tests. In this approach, we used a combination of optical flow for capturing temporal features and convolutional neural networks for capturing spatial features. The experimental results show that, balanced datasets in terms of the number of sheep, the BOF-VGG19 model trained with the transfer learning method is 90%, the BOF-CovnLSTM model using ConvLSTM networks is 95%, and the BOF-CNN model using CNNs is 100%, were determined as the optical flow models that classify fear test behavior traits the most successfully. The success rate of UNB-CNN and B-CNN models trained on raw images was 70%. As a result, we obtained successful results in classifying behavioral traits in models trained with optical flow pre-processed data sets balanced in terms of sheep numbers. At the same time, using a combination of optical flow and convolutional neural networks in videos where spatial features between temperament classes are similar enhanced the classification accuracy of fear behavior traits by capturing temporal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽觅夏完成签到 ,获得积分10
刚刚
Mistletoe完成签到 ,获得积分10
1秒前
赘婿应助xu采纳,获得10
4秒前
吃碗大米饭完成签到,获得积分10
5秒前
可爱的函函应助kirirto采纳,获得10
6秒前
9秒前
xj完成签到,获得积分10
11秒前
Mipe完成签到,获得积分10
19秒前
33秒前
斯文败类应助科研通管家采纳,获得10
37秒前
ding应助陳.采纳,获得10
44秒前
健忘捕完成签到 ,获得积分10
44秒前
49秒前
陳.发布了新的文献求助10
54秒前
Milton_z完成签到 ,获得积分10
1分钟前
1分钟前
liwang9301发布了新的文献求助10
1分钟前
石鑫发布了新的文献求助10
1分钟前
1分钟前
liwang9301完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
1分钟前
天才小熊猫完成签到,获得积分10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
开放的麦片完成签到,获得积分10
2分钟前
lizhoukan1完成签到,获得积分10
2分钟前
毛毛猫完成签到 ,获得积分10
2分钟前
cdu应助veggieg采纳,获得30
3分钟前
石鑫完成签到 ,获得积分10
3分钟前
舒服的幼荷完成签到,获得积分10
3分钟前
在路上完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
lzy发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845964
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748