Comparison of machine learning models based on multi-parametric magnetic resonance imaging and ultrasound videos for the prediction of prostate cancer

磁共振成像 人工智能 医学 接收机工作特性 支持向量机 前列腺癌 Boosting(机器学习) 曼惠特尼U检验 超声波 机器学习 试验装置 随机森林 计算机科学 癌症 放射科 内科学
作者
Xiaoyang Qi,Kai Wang,Bojian Feng,Xiang Sun,Jie Yang,Zhengbiao Hu,Maoliang Zhang,Liang Cheng,Jin Lin,Lingyan Zhou,Zhengping Wang,Jincao Yao
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13
标识
DOI:10.3389/fonc.2023.1157949
摘要

Objective To establish machine learning (ML) prediction models for prostate cancer (PCa) using transrectal ultrasound videos and multi-parametric magnetic resonance imaging (mpMRI) and compare their diagnostic performance. Materials and methods We systematically collated the data of 383 patients, including 187 with PCa and 196 with benign lesions. Of them, 307 patients (150 with PCa and 157 with benign lesions) were randomly selected to train and validate the ML models, 76 patients were used as test set. B-Ultrasound videos (BUS), mpMRI T2 sequence (T2), and ADC sequence (ADC) were obtained from all patients. We extracted 851 features of each patient in the BUS, T2, and ADC groups and used a t-test, the Mann–Whitney U test, and LASSO regression to screen the features. Support vector machine (SVM), random forest (RF), adaptive boosting (ADB), and gradient boosting machine (GBM) models were used to establish radiomics models. In addition, we fused the features screened via LASSO regression from three groups as new features and rebuilt ML models. The performance of the ML models in diagnosing PCa in the BUS, T2, ADC, and fusion groups was compared using the area under the ROC curve (AUC), sensitivity, specificity, and accuracy. Results In the test cohort, the AUC of each model in the ADC group was higher than that of in the.BUS and T2 groups. Among the models, the RF model had the best diagnostic performance, with an AUC of 0.85, sensitivity of 0.78 (0.61–0.89), specificity of 0.84 (0.69–0.94), and accuracy of 0.83 (0.66–0.93). The SVM model in both the BUS and T2 groups performed best. Based on the features screened in the BUS, T2, and ADC groups fused to construct the models, the SVM model was found to perform best, with an AUC of 0.87, sensitivity of 0.73 (0.56–0.86), specificity of 0.79 (0.63–0.90), and accuracy of 0.77 (0.59–0.89). The difference in the results was statistically significant ( p <0.05). Conclusion The ML prediction models had a good diagnostic ability for PCa. Among them, the SVM model in the fusion group showed the best performance in diagnosing PCa. These prediction models can help radiologists make better diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOLO完成签到,获得积分10
1秒前
xfxx发布了新的文献求助30
1秒前
4秒前
今后应助Tache采纳,获得10
5秒前
7秒前
慕新发布了新的文献求助10
9秒前
9秒前
Damocles完成签到,获得积分10
10秒前
叶言完成签到,获得积分10
10秒前
liuce0307完成签到,获得积分10
13秒前
木木三完成签到,获得积分10
13秒前
14秒前
专注的飞瑶完成签到 ,获得积分10
14秒前
情怀应助Damocles采纳,获得10
16秒前
17秒前
17秒前
caixiaobinger完成签到 ,获得积分10
18秒前
都是发布了新的文献求助30
18秒前
ardejiang发布了新的文献求助10
19秒前
20秒前
汪汪发布了新的文献求助10
21秒前
vickeylea发布了新的文献求助10
22秒前
23秒前
23秒前
CipherSage应助都是采纳,获得10
25秒前
大模型应助奋斗枫采纳,获得10
26秒前
27秒前
称心茹嫣发布了新的文献求助10
28秒前
30秒前
30秒前
时势造英雄完成签到 ,获得积分10
30秒前
wang_yi发布了新的文献求助10
31秒前
礽粥粥完成签到,获得积分10
31秒前
Damocles发布了新的文献求助10
33秒前
mic发布了新的文献求助10
35秒前
juanjuan应助stronger采纳,获得10
36秒前
37秒前
39秒前
wang_yi完成签到,获得积分20
39秒前
乌龙茶干完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919