硫黄
材料科学
纳米颗粒
锂(药物)
化学工程
催化作用
沉积(地质)
纳米技术
电池(电)
硫化物
无机化学
化学
冶金
有机化学
物理
功率(物理)
沉积物
生物
医学
古生物学
内分泌学
量子力学
工程类
作者
Biying Wang,Ruopian Fang,Ke Chen,Shiyang Huang,Ranming Niu,Zhichun Yu,George O'Connell,Huanyu Jin,Qiaowei Lin,Jiaxing Liang,Julie M. Cairney,Dawei Wang
出处
期刊:Small
[Wiley]
日期:2024-02-02
卷期号:20 (27)
被引量:1
标识
DOI:10.1002/smll.202310801
摘要
Abstract Lithium–sulfur (Li–S) batteries show extraordinary promise as a next‐generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li 2 S), and substantial Li 2 S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WO x /W 2 C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li 2 S oxidation, as well as controlled Li 2 S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li 2 S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li 2 S. These attributes enable Li–S cells to deliver high‐rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li 2 S oxidation under practical cell conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI