清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An improved binary grey wolf optimizer for constrained engineering design problems

计算机科学 特征选择 过度拟合 特征(语言学) 采样(信号处理) 人工智能 二进制数 算法 模式识别(心理学) 数学优化 数学 语言学 人工神经网络 算术 滤波器(信号处理) 哲学 计算机视觉
作者
Parijata Majumdar,Diptendu Bhattacharya,Sanjoy Mitra,Leonardo Ramos Rodrigues,Diego Oliva
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13458
摘要

Abstract An Improved binary Non‐Linear Convergent Bi‐phase Mutated Grey Wolf Optimizer (IbGWO) is proposed for solving feature selection problems with two main goals reducing irrelevant features and maximizing accuracy. We used stratified ‐fold cross‐validation that performs stratified sampling on the data to avoid overfitting problems. The fitness function used in the proposed algorithm allows choosing the solution with the minimum number of features if more than one feature has the same highest accuracy. When stratified cross‐validation is performed, the split datasets contain the same share of the feature of interest as the actual dataset. During stratified sampling, the cross‐validation result minimizes the generalization error to a considerable extent, with a smaller variance. Feature selection could be seen as an optimization problem that efficiently removes irrelevant data from high‐dimensional data to reduce computation time and improve learning accuracy. This paper proposes an improved Non‐Linear Convergent Bi‐Phase Mutated Binary Grey Wolf Optimizer (IbGWO) algorithm for feature selection. The bi‐phase mutation enhances the rate of exploitation of GWO, where the first mutation phase minimizes the number of features and the second phase adds more informative features for accurate feature selection. A non‐linear tangent trigonometric function is used for convergence to generalize better while handling heterogeneous data. To accelerate the global convergence speed, an inertia weight is added to control the position updating of the grey wolves. Feature‐weighted K‐Nearest Neighbor is used to enhance classification accuracy, where only relevant features are used for feature selection. Experimental results confirm that IbGWO outperforms other algorithms in terms of average accuracy of 0.8716, average number of chosen features of 6.13, average fitness of 0.1717, and average standard deviation of 0.0072 tested on different datasets and in terms of statistical analysis. IbGWO is also benchmarked using unimodal, multimodal, and IEEE CEC 2019 functions, where it outperforms other algorithms in most cases. Three classical engineering design problems are also solved using IbGWO, which significantly outperforms other algorithms. Moreover, the overtaking percentage of the proposed algorithm is .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
as9988776654完成签到 ,获得积分10
14秒前
默默雪旋完成签到 ,获得积分10
19秒前
52秒前
chenyue233完成签到,获得积分10
52秒前
1分钟前
量子星尘发布了新的文献求助50
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
loen完成签到,获得积分10
1分钟前
多亿点完成签到 ,获得积分10
2分钟前
shuang完成签到 ,获得积分10
2分钟前
Ava应助michael_suo采纳,获得10
2分钟前
2分钟前
husi发布了新的文献求助10
2分钟前
2分钟前
husi完成签到 ,获得积分20
2分钟前
在水一方应助我爱读文献采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
michael_suo发布了新的文献求助10
3分钟前
michael_suo完成签到,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
馆长举报i beLIeVe求助涉嫌违规
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
馆长举报小黄瓜896求助涉嫌违规
4分钟前
馆长举报kkkkk求助涉嫌违规
4分钟前
超级兵12完成签到,获得积分10
4分钟前
程小柒完成签到 ,获得积分10
4分钟前
馆长举报Yoli求助涉嫌违规
4分钟前
馆长举报欢喜的海求助涉嫌违规
5分钟前
lei029发布了新的文献求助30
5分钟前
馆长举报耶耶耶y求助涉嫌违规
5分钟前
Wenjie_Xin完成签到,获得积分10
5分钟前
馆长举报友好慕卉求助涉嫌违规
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967