An improved binary grey wolf optimizer for constrained engineering design problems

计算机科学 特征选择 过度拟合 特征(语言学) 采样(信号处理) 人工智能 二进制数 算法 模式识别(心理学) 数学优化 数学 语言学 人工神经网络 算术 滤波器(信号处理) 哲学 计算机视觉
作者
Parijata Majumdar,Diptendu Bhattacharya,Sanjoy Mitra,Leonardo Ramos Rodrigues,Diego Oliva
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13458
摘要

Abstract An Improved binary Non‐Linear Convergent Bi‐phase Mutated Grey Wolf Optimizer (IbGWO) is proposed for solving feature selection problems with two main goals reducing irrelevant features and maximizing accuracy. We used stratified ‐fold cross‐validation that performs stratified sampling on the data to avoid overfitting problems. The fitness function used in the proposed algorithm allows choosing the solution with the minimum number of features if more than one feature has the same highest accuracy. When stratified cross‐validation is performed, the split datasets contain the same share of the feature of interest as the actual dataset. During stratified sampling, the cross‐validation result minimizes the generalization error to a considerable extent, with a smaller variance. Feature selection could be seen as an optimization problem that efficiently removes irrelevant data from high‐dimensional data to reduce computation time and improve learning accuracy. This paper proposes an improved Non‐Linear Convergent Bi‐Phase Mutated Binary Grey Wolf Optimizer (IbGWO) algorithm for feature selection. The bi‐phase mutation enhances the rate of exploitation of GWO, where the first mutation phase minimizes the number of features and the second phase adds more informative features for accurate feature selection. A non‐linear tangent trigonometric function is used for convergence to generalize better while handling heterogeneous data. To accelerate the global convergence speed, an inertia weight is added to control the position updating of the grey wolves. Feature‐weighted K‐Nearest Neighbor is used to enhance classification accuracy, where only relevant features are used for feature selection. Experimental results confirm that IbGWO outperforms other algorithms in terms of average accuracy of 0.8716, average number of chosen features of 6.13, average fitness of 0.1717, and average standard deviation of 0.0072 tested on different datasets and in terms of statistical analysis. IbGWO is also benchmarked using unimodal, multimodal, and IEEE CEC 2019 functions, where it outperforms other algorithms in most cases. Three classical engineering design problems are also solved using IbGWO, which significantly outperforms other algorithms. Moreover, the overtaking percentage of the proposed algorithm is .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代冷松完成签到,获得积分10
1秒前
Chimmy完成签到,获得积分10
6秒前
朴树朋友完成签到,获得积分20
6秒前
wlnhyF完成签到,获得积分10
8秒前
pursuit完成签到,获得积分10
11秒前
Neltharion完成签到,获得积分10
12秒前
沈海完成签到,获得积分10
14秒前
悦耳傥完成签到 ,获得积分10
14秒前
一叶知秋应助大橙子采纳,获得10
14秒前
科研小能手完成签到,获得积分10
15秒前
guoxingliu发布了新的文献求助200
16秒前
Double_N完成签到,获得积分10
19秒前
路路完成签到 ,获得积分10
20秒前
碧蓝的盼夏完成签到,获得积分10
24秒前
AU完成签到 ,获得积分10
25秒前
研友_yLpYkn完成签到,获得积分10
26秒前
兴奋的定帮完成签到 ,获得积分0
27秒前
一叶知秋应助大橙子采纳,获得10
28秒前
29秒前
金蛋蛋完成签到 ,获得积分10
29秒前
马琛尧完成签到 ,获得积分10
31秒前
一行白鹭上青天完成签到 ,获得积分10
35秒前
帅气的宽完成签到 ,获得积分10
36秒前
lixoii完成签到 ,获得积分10
38秒前
萌萌许完成签到,获得积分10
38秒前
sunce1990完成签到 ,获得积分10
41秒前
Bin_Liu完成签到,获得积分20
42秒前
宇老师完成签到,获得积分10
42秒前
研友_VZG7GZ应助马琛尧采纳,获得10
43秒前
安安的小板栗完成签到,获得积分10
46秒前
123_完成签到,获得积分10
48秒前
NexusExplorer应助大橙子采纳,获得10
49秒前
上善若水完成签到 ,获得积分10
51秒前
qiqi发布了新的文献求助10
55秒前
55秒前
英俊的铭应助cm采纳,获得10
56秒前
57秒前
量子星尘发布了新的文献求助10
57秒前
affy210310完成签到,获得积分10
58秒前
名字不好起完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022