An improved binary grey wolf optimizer for constrained engineering design problems

计算机科学 特征选择 过度拟合 特征(语言学) 采样(信号处理) 人工智能 二进制数 算法 模式识别(心理学) 数学优化 数学 语言学 人工神经网络 算术 滤波器(信号处理) 哲学 计算机视觉
作者
Parijata Majumdar,Diptendu Bhattacharya,Sanjoy Mitra,Leonardo Ramos Rodrigues,Diego Oliva
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13458
摘要

Abstract An Improved binary Non‐Linear Convergent Bi‐phase Mutated Grey Wolf Optimizer (IbGWO) is proposed for solving feature selection problems with two main goals reducing irrelevant features and maximizing accuracy. We used stratified ‐fold cross‐validation that performs stratified sampling on the data to avoid overfitting problems. The fitness function used in the proposed algorithm allows choosing the solution with the minimum number of features if more than one feature has the same highest accuracy. When stratified cross‐validation is performed, the split datasets contain the same share of the feature of interest as the actual dataset. During stratified sampling, the cross‐validation result minimizes the generalization error to a considerable extent, with a smaller variance. Feature selection could be seen as an optimization problem that efficiently removes irrelevant data from high‐dimensional data to reduce computation time and improve learning accuracy. This paper proposes an improved Non‐Linear Convergent Bi‐Phase Mutated Binary Grey Wolf Optimizer (IbGWO) algorithm for feature selection. The bi‐phase mutation enhances the rate of exploitation of GWO, where the first mutation phase minimizes the number of features and the second phase adds more informative features for accurate feature selection. A non‐linear tangent trigonometric function is used for convergence to generalize better while handling heterogeneous data. To accelerate the global convergence speed, an inertia weight is added to control the position updating of the grey wolves. Feature‐weighted K‐Nearest Neighbor is used to enhance classification accuracy, where only relevant features are used for feature selection. Experimental results confirm that IbGWO outperforms other algorithms in terms of average accuracy of 0.8716, average number of chosen features of 6.13, average fitness of 0.1717, and average standard deviation of 0.0072 tested on different datasets and in terms of statistical analysis. IbGWO is also benchmarked using unimodal, multimodal, and IEEE CEC 2019 functions, where it outperforms other algorithms in most cases. Three classical engineering design problems are also solved using IbGWO, which significantly outperforms other algorithms. Moreover, the overtaking percentage of the proposed algorithm is .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助mm采纳,获得10
刚刚
梦蝴蝶应助彩色立辉采纳,获得50
1秒前
无奈盼波完成签到,获得积分20
1秒前
鲤鱼一一发布了新的文献求助10
2秒前
温婉的访风完成签到 ,获得积分20
2秒前
2秒前
斯文败类应助炙热的又夏采纳,获得10
2秒前
丘比特应助oh采纳,获得10
3秒前
仙贝发布了新的文献求助10
3秒前
无奈盼波发布了新的文献求助10
5秒前
烟花应助杨树采纳,获得10
6秒前
6秒前
7秒前
意难平发布了新的文献求助10
8秒前
Oct完成签到,获得积分10
8秒前
爱唱歌的yu仔完成签到,获得积分10
9秒前
科研通AI5应助科研小趴菜采纳,获得10
10秒前
Dreamy关注了科研通微信公众号
10秒前
赘婿应助筱唐采纳,获得10
10秒前
10秒前
Lucas应助笑嘻嘻采纳,获得10
10秒前
10秒前
whq531608发布了新的文献求助10
10秒前
kkkkk发布了新的文献求助20
10秒前
10秒前
11秒前
你爸爸完成签到,获得积分10
11秒前
直率若菱发布了新的文献求助10
11秒前
SYLH应助fff采纳,获得10
12秒前
12秒前
尺八发布了新的文献求助10
13秒前
jou发布了新的文献求助10
13秒前
14秒前
未来发布了新的文献求助10
14秒前
后海海步一般兵完成签到,获得积分10
15秒前
15秒前
谨慎的映阳完成签到 ,获得积分10
15秒前
Sesenta1发布了新的文献求助10
17秒前
先一给先一的求助进行了留言
17秒前
忧虑的靖巧完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160