An improved binary grey wolf optimizer for constrained engineering design problems

计算机科学 特征选择 过度拟合 特征(语言学) 采样(信号处理) 人工智能 二进制数 算法 模式识别(心理学) 数学优化 数学 语言学 人工神经网络 算术 滤波器(信号处理) 哲学 计算机视觉
作者
Parijata Majumdar,Diptendu Bhattacharya,Sanjoy Mitra,Leonardo Ramos Rodrigues,Diego Oliva
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13458
摘要

Abstract An Improved binary Non‐Linear Convergent Bi‐phase Mutated Grey Wolf Optimizer (IbGWO) is proposed for solving feature selection problems with two main goals reducing irrelevant features and maximizing accuracy. We used stratified ‐fold cross‐validation that performs stratified sampling on the data to avoid overfitting problems. The fitness function used in the proposed algorithm allows choosing the solution with the minimum number of features if more than one feature has the same highest accuracy. When stratified cross‐validation is performed, the split datasets contain the same share of the feature of interest as the actual dataset. During stratified sampling, the cross‐validation result minimizes the generalization error to a considerable extent, with a smaller variance. Feature selection could be seen as an optimization problem that efficiently removes irrelevant data from high‐dimensional data to reduce computation time and improve learning accuracy. This paper proposes an improved Non‐Linear Convergent Bi‐Phase Mutated Binary Grey Wolf Optimizer (IbGWO) algorithm for feature selection. The bi‐phase mutation enhances the rate of exploitation of GWO, where the first mutation phase minimizes the number of features and the second phase adds more informative features for accurate feature selection. A non‐linear tangent trigonometric function is used for convergence to generalize better while handling heterogeneous data. To accelerate the global convergence speed, an inertia weight is added to control the position updating of the grey wolves. Feature‐weighted K‐Nearest Neighbor is used to enhance classification accuracy, where only relevant features are used for feature selection. Experimental results confirm that IbGWO outperforms other algorithms in terms of average accuracy of 0.8716, average number of chosen features of 6.13, average fitness of 0.1717, and average standard deviation of 0.0072 tested on different datasets and in terms of statistical analysis. IbGWO is also benchmarked using unimodal, multimodal, and IEEE CEC 2019 functions, where it outperforms other algorithms in most cases. Three classical engineering design problems are also solved using IbGWO, which significantly outperforms other algorithms. Moreover, the overtaking percentage of the proposed algorithm is .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助shyotion采纳,获得10
刚刚
1秒前
CodeCraft应助磊少采纳,获得10
1秒前
Farr完成签到,获得积分10
1秒前
阿州发布了新的文献求助10
2秒前
wanci应助chen采纳,获得10
4秒前
4秒前
小武子发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
8秒前
醒醒完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
史迪仔完成签到,获得积分10
11秒前
Fengh发布了新的文献求助10
11秒前
今后应助复杂的问玉采纳,获得10
12秒前
13秒前
lzz发布了新的文献求助10
13秒前
dhjic发布了新的文献求助10
14秒前
14秒前
14秒前
Alvess完成签到 ,获得积分10
16秒前
共享精神应助123采纳,获得10
17秒前
大象发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
20秒前
西红柿发布了新的文献求助10
22秒前
大象完成签到,获得积分10
23秒前
23秒前
开朗艳一发布了新的文献求助10
23秒前
赘婿应助彭彭采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
沐言发布了新的文献求助10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376