An improved binary grey wolf optimizer for constrained engineering design problems

计算机科学 特征选择 过度拟合 特征(语言学) 采样(信号处理) 人工智能 二进制数 算法 模式识别(心理学) 数学优化 数学 语言学 人工神经网络 算术 滤波器(信号处理) 哲学 计算机视觉
作者
Parijata Majumdar,Diptendu Bhattacharya,Sanjoy Mitra,Leonardo Ramos Rodrigues,Diego Oliva
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13458
摘要

Abstract An Improved binary Non‐Linear Convergent Bi‐phase Mutated Grey Wolf Optimizer (IbGWO) is proposed for solving feature selection problems with two main goals reducing irrelevant features and maximizing accuracy. We used stratified ‐fold cross‐validation that performs stratified sampling on the data to avoid overfitting problems. The fitness function used in the proposed algorithm allows choosing the solution with the minimum number of features if more than one feature has the same highest accuracy. When stratified cross‐validation is performed, the split datasets contain the same share of the feature of interest as the actual dataset. During stratified sampling, the cross‐validation result minimizes the generalization error to a considerable extent, with a smaller variance. Feature selection could be seen as an optimization problem that efficiently removes irrelevant data from high‐dimensional data to reduce computation time and improve learning accuracy. This paper proposes an improved Non‐Linear Convergent Bi‐Phase Mutated Binary Grey Wolf Optimizer (IbGWO) algorithm for feature selection. The bi‐phase mutation enhances the rate of exploitation of GWO, where the first mutation phase minimizes the number of features and the second phase adds more informative features for accurate feature selection. A non‐linear tangent trigonometric function is used for convergence to generalize better while handling heterogeneous data. To accelerate the global convergence speed, an inertia weight is added to control the position updating of the grey wolves. Feature‐weighted K‐Nearest Neighbor is used to enhance classification accuracy, where only relevant features are used for feature selection. Experimental results confirm that IbGWO outperforms other algorithms in terms of average accuracy of 0.8716, average number of chosen features of 6.13, average fitness of 0.1717, and average standard deviation of 0.0072 tested on different datasets and in terms of statistical analysis. IbGWO is also benchmarked using unimodal, multimodal, and IEEE CEC 2019 functions, where it outperforms other algorithms in most cases. Three classical engineering design problems are also solved using IbGWO, which significantly outperforms other algorithms. Moreover, the overtaking percentage of the proposed algorithm is .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
safari发布了新的文献求助30
3秒前
mira发布了新的文献求助10
4秒前
yier发布了新的文献求助10
5秒前
6秒前
Hello应助June采纳,获得10
6秒前
6秒前
可爱的函函应助123采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
话藏心完成签到,获得积分10
8秒前
9秒前
莫飞完成签到,获得积分10
11秒前
芒果爸爸发布了新的文献求助10
11秒前
13秒前
jiajia发布了新的文献求助10
13秒前
woleaisa发布了新的文献求助10
13秒前
14秒前
ZDW777完成签到 ,获得积分10
14秒前
mira完成签到,获得积分10
15秒前
15秒前
张秉环完成签到 ,获得积分10
16秒前
英俊的铭应助zhu采纳,获得10
17秒前
高兴给浮光的求助进行了留言
18秒前
angelinazh发布了新的文献求助10
20秒前
Flori完成签到 ,获得积分10
20秒前
科研通AI6应助繁荣的念双采纳,获得10
22秒前
scgmwwx完成签到 ,获得积分0
24秒前
今后应助June采纳,获得10
24秒前
24秒前
11发布了新的文献求助10
24秒前
26秒前
26秒前
天才包发布了新的文献求助10
27秒前
芝麻球ii完成签到,获得积分10
28秒前
orixero应助茶米采纳,获得10
28秒前
28秒前
李杰发布了新的文献求助10
28秒前
angelinazh完成签到,获得积分10
29秒前
29秒前
雨田完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073