Machine learning prediction of compressive strength of concrete with resistivity modification

抗压强度 支持向量机 材料科学 电阻率和电导率 机器学习 决策树 人工智能 计算机科学 复合材料 工程类 电气工程
作者
Lin Chi,Mian Wang,Kaihua Liu,Shuang Lü,Lili Kan,Xuemin Xia,Chendong Huang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:36: 106470-106470
标识
DOI:10.1016/j.mtcomm.2023.106470
摘要

Machine learning techniques can predict the compressive strength of cement-based materials with good accuracy and learning capacity. Traditional compressive strength prediction according to machine learning techniques such as the support vector machine (SVM), decision tree, and Gaussian regression are normally based on the mix proportion of concrete compositions. Resistivity can realize the long-term, real-time and in-situ monitoring of compressive strength of the concrete structures. Therefore, electrical resistivity is regarded as a key nondestructive testing parameter to improve the accuracy of the compressive strength prediction model according to machine learning techniques in this study. When the resistivity was taken into consideration as an input variable accounting for 0.166, the fitting degree of the compressive strength in the decision trees model is increased from 0.77 to 0.79. In the SVM model, the fitting degree remains 0.79, the RMSE decreases from 8.490 to 8.335, which indicates the reliability is improved. The fitting degree in the Gaussian model model is increased from 0.81 to 0.82. As a new parameter variable, the accuracy of the compressive strength prediction model modified with electrical resistivity can be significantly increased. Therefore, the nondestructive testing method can be combined with machine learning techniques to promote the development of civil engineering building structure monitoring, diagnosis and facilitate the development of intelligent buildings through data-driven approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daaarrr完成签到,获得积分10
刚刚
非一发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
乐乐应助事在人为采纳,获得10
6秒前
7秒前
jisujun完成签到,获得积分20
7秒前
41应助momo采纳,获得10
8秒前
DijiaXu应助jszhoucl采纳,获得10
10秒前
热爱科研的小白鼠完成签到,获得积分10
10秒前
10秒前
爱穿毛袜完成签到,获得积分10
11秒前
大模型应助LJJ采纳,获得10
11秒前
spirit完成签到 ,获得积分10
12秒前
思源应助hhh采纳,获得10
12秒前
13秒前
正直的魔镜完成签到 ,获得积分10
14秒前
16秒前
KM比比发布了新的文献求助10
17秒前
如此完成签到,获得积分10
17秒前
qq完成签到 ,获得积分10
18秒前
qqq发布了新的文献求助10
19秒前
火星上鑫鹏完成签到,获得积分10
19秒前
事在人为发布了新的文献求助10
19秒前
沉默的婴发布了新的文献求助20
20秒前
杨涵完成签到 ,获得积分10
21秒前
ponysmile完成签到,获得积分20
22秒前
葡萄完成签到,获得积分10
22秒前
22秒前
共享精神应助卖萌的秋田采纳,获得10
23秒前
24秒前
阿钉发布了新的文献求助10
26秒前
26秒前
tannie完成签到 ,获得积分10
28秒前
30秒前
LJJ发布了新的文献求助10
31秒前
33秒前
英俊的铭应助qqq采纳,获得10
33秒前
Xw完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173