Machine learning prediction of compressive strength of concrete with resistivity modification

抗压强度 支持向量机 材料科学 电阻率和电导率 机器学习 决策树 人工智能 计算机科学 复合材料 工程类 电气工程
作者
Lin Chi,Mian Wang,Kaihua Liu,Shuang Lü,Lili Kan,Xuemin Xia,Chendong Huang
出处
期刊:Materials today communications [Elsevier]
卷期号:36: 106470-106470
标识
DOI:10.1016/j.mtcomm.2023.106470
摘要

Machine learning techniques can predict the compressive strength of cement-based materials with good accuracy and learning capacity. Traditional compressive strength prediction according to machine learning techniques such as the support vector machine (SVM), decision tree, and Gaussian regression are normally based on the mix proportion of concrete compositions. Resistivity can realize the long-term, real-time and in-situ monitoring of compressive strength of the concrete structures. Therefore, electrical resistivity is regarded as a key nondestructive testing parameter to improve the accuracy of the compressive strength prediction model according to machine learning techniques in this study. When the resistivity was taken into consideration as an input variable accounting for 0.166, the fitting degree of the compressive strength in the decision trees model is increased from 0.77 to 0.79. In the SVM model, the fitting degree remains 0.79, the RMSE decreases from 8.490 to 8.335, which indicates the reliability is improved. The fitting degree in the Gaussian model model is increased from 0.81 to 0.82. As a new parameter variable, the accuracy of the compressive strength prediction model modified with electrical resistivity can be significantly increased. Therefore, the nondestructive testing method can be combined with machine learning techniques to promote the development of civil engineering building structure monitoring, diagnosis and facilitate the development of intelligent buildings through data-driven approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小付发布了新的文献求助10
1秒前
脑洞疼应助义气的藏鸟采纳,获得10
1秒前
2秒前
汉堡包应助铃铛采纳,获得10
2秒前
yaoye完成签到,获得积分20
3秒前
3秒前
从容傲柏完成签到,获得积分10
4秒前
㊣㊣完成签到,获得积分10
4秒前
5秒前
123完成签到,获得积分10
5秒前
5秒前
6秒前
在水一方应助依霏采纳,获得10
6秒前
6秒前
baobaoxiong发布了新的文献求助30
6秒前
机灵语雪完成签到,获得积分10
7秒前
7秒前
7秒前
Lucas应助KIRITO采纳,获得10
8秒前
xvan发布了新的文献求助10
8秒前
miaojiaying发布了新的文献求助10
9秒前
masterwill发布了新的文献求助10
9秒前
王文艺发布了新的文献求助30
10秒前
yyyaooo发布了新的文献求助10
10秒前
10秒前
11秒前
苁蓉远志完成签到 ,获得积分10
12秒前
13秒前
微笑傲白发布了新的文献求助10
13秒前
慕青应助半截神经病采纳,获得10
13秒前
哦豁完成签到,获得积分10
13秒前
14秒前
赘婿应助yaoyao6688采纳,获得10
14秒前
科研通AI6应助半颜采纳,获得10
16秒前
杨杨发布了新的文献求助10
17秒前
Ava应助we采纳,获得10
17秒前
shixinran完成签到,获得积分10
17秒前
masterwill完成签到,获得积分10
17秒前
Jasper应助baobaoxiong采纳,获得10
17秒前
烟花应助怕黑的向南采纳,获得10
21秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501080
求助须知:如何正确求助?哪些是违规求助? 4597484
关于积分的说明 14459145
捐赠科研通 4530861
什么是DOI,文献DOI怎么找? 2482982
邀请新用户注册赠送积分活动 1466639
关于科研通互助平台的介绍 1439310