Machine learning prediction of compressive strength of concrete with resistivity modification

抗压强度 支持向量机 材料科学 电阻率和电导率 机器学习 决策树 人工智能 计算机科学 复合材料 工程类 电气工程
作者
Lin Chi,Mian Wang,Kaihua Liu,Shuang Lü,Lili Kan,Xuemin Xia,Chendong Huang
出处
期刊:Materials today communications [Elsevier]
卷期号:36: 106470-106470
标识
DOI:10.1016/j.mtcomm.2023.106470
摘要

Machine learning techniques can predict the compressive strength of cement-based materials with good accuracy and learning capacity. Traditional compressive strength prediction according to machine learning techniques such as the support vector machine (SVM), decision tree, and Gaussian regression are normally based on the mix proportion of concrete compositions. Resistivity can realize the long-term, real-time and in-situ monitoring of compressive strength of the concrete structures. Therefore, electrical resistivity is regarded as a key nondestructive testing parameter to improve the accuracy of the compressive strength prediction model according to machine learning techniques in this study. When the resistivity was taken into consideration as an input variable accounting for 0.166, the fitting degree of the compressive strength in the decision trees model is increased from 0.77 to 0.79. In the SVM model, the fitting degree remains 0.79, the RMSE decreases from 8.490 to 8.335, which indicates the reliability is improved. The fitting degree in the Gaussian model model is increased from 0.81 to 0.82. As a new parameter variable, the accuracy of the compressive strength prediction model modified with electrical resistivity can be significantly increased. Therefore, the nondestructive testing method can be combined with machine learning techniques to promote the development of civil engineering building structure monitoring, diagnosis and facilitate the development of intelligent buildings through data-driven approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李繁蕊发布了新的文献求助10
刚刚
刚刚
刚刚
可可完成签到,获得积分10
刚刚
1秒前
自由寻菱发布了新的文献求助20
2秒前
俏皮元珊发布了新的文献求助10
2秒前
Owen应助YY采纳,获得10
2秒前
优秀的逊发布了新的文献求助10
2秒前
wzm完成签到,获得积分10
3秒前
一年发3篇JACS完成签到,获得积分10
3秒前
3秒前
SciGPT应助木子采纳,获得10
4秒前
66完成签到,获得积分10
4秒前
赵鹏翔发布了新的文献求助10
4秒前
带象完成签到,获得积分10
4秒前
才露尖尖角完成签到,获得积分10
5秒前
幽默服饰完成签到 ,获得积分10
5秒前
芝士就是力量完成签到,获得积分10
5秒前
xr完成签到 ,获得积分10
5秒前
YaoX发布了新的文献求助10
6秒前
打打应助核桃采纳,获得10
6秒前
Porifera完成签到,获得积分10
6秒前
6秒前
笋蒸鱼发布了新的文献求助10
6秒前
余云开发布了新的文献求助50
7秒前
顾矜应助板凳采纳,获得10
7秒前
带象发布了新的文献求助20
8秒前
9秒前
9秒前
阿曼尼完成签到 ,获得积分10
9秒前
英俊的铭应助LILING采纳,获得10
9秒前
iRan完成签到,获得积分10
10秒前
落忆完成签到 ,获得积分10
10秒前
蜡笔完成签到,获得积分10
10秒前
趁微风不躁完成签到,获得积分10
10秒前
通~发布了新的文献求助10
11秒前
11秒前
张磊完成签到,获得积分10
11秒前
冷艳的太君完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740