Machine learning prediction of compressive strength of concrete with resistivity modification

抗压强度 支持向量机 材料科学 电阻率和电导率 机器学习 决策树 人工智能 计算机科学 复合材料 工程类 电气工程
作者
Lin Chi,Mian Wang,Kaihua Liu,Shuang Lü,Lili Kan,Xuemin Xia,Chendong Huang
出处
期刊:Materials today communications [Elsevier]
卷期号:36: 106470-106470
标识
DOI:10.1016/j.mtcomm.2023.106470
摘要

Machine learning techniques can predict the compressive strength of cement-based materials with good accuracy and learning capacity. Traditional compressive strength prediction according to machine learning techniques such as the support vector machine (SVM), decision tree, and Gaussian regression are normally based on the mix proportion of concrete compositions. Resistivity can realize the long-term, real-time and in-situ monitoring of compressive strength of the concrete structures. Therefore, electrical resistivity is regarded as a key nondestructive testing parameter to improve the accuracy of the compressive strength prediction model according to machine learning techniques in this study. When the resistivity was taken into consideration as an input variable accounting for 0.166, the fitting degree of the compressive strength in the decision trees model is increased from 0.77 to 0.79. In the SVM model, the fitting degree remains 0.79, the RMSE decreases from 8.490 to 8.335, which indicates the reliability is improved. The fitting degree in the Gaussian model model is increased from 0.81 to 0.82. As a new parameter variable, the accuracy of the compressive strength prediction model modified with electrical resistivity can be significantly increased. Therefore, the nondestructive testing method can be combined with machine learning techniques to promote the development of civil engineering building structure monitoring, diagnosis and facilitate the development of intelligent buildings through data-driven approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26937635完成签到,获得积分10
刚刚
DPH完成签到 ,获得积分10
1秒前
张雯雯发布了新的文献求助10
1秒前
缙云山2020发布了新的文献求助10
1秒前
1秒前
好好完成签到,获得积分10
1秒前
所所应助追梦小帅采纳,获得10
1秒前
精明高丽关注了科研通微信公众号
1秒前
麦麦发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
天空之城完成签到,获得积分10
3秒前
3秒前
nuli完成签到,获得积分10
3秒前
3秒前
汉堡包应助流光采纳,获得10
4秒前
cy完成签到,获得积分10
4秒前
4秒前
夹心酱的飞踢完成签到,获得积分10
4秒前
4秒前
善学以致用应助每㐬山风采纳,获得10
5秒前
5秒前
5秒前
唛仔完成签到 ,获得积分10
6秒前
SciGPT应助Japrin采纳,获得10
6秒前
longer完成签到 ,获得积分10
6秒前
26937635发布了新的文献求助10
6秒前
Akim应助呆萌安双采纳,获得10
6秒前
6秒前
张1完成签到,获得积分10
6秒前
Wyan完成签到,获得积分10
7秒前
阔达的定帮完成签到,获得积分20
7秒前
7秒前
7秒前
睡醒了发布了新的文献求助10
8秒前
8秒前
宋礼关注了科研通微信公众号
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853