BDNet: A BERT-based dual-path network for text-to-image cross-modal person re-identification

计算机科学 特征(语言学) 特征学习 人工智能 公制(单位) 鉴定(生物学) 代表(政治) 模式识别(心理学) 联营 特征提取 路径(计算) 机器学习 哲学 政治学 政治 经济 生物 程序设计语言 法学 植物 语言学 运营管理
作者
Qiang Liu,He Xiaohai,Qizhi Teng,Linbo Qing,Honggang Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:141: 109636-109636 被引量:12
标识
DOI:10.1016/j.patcog.2023.109636
摘要

Text-to-image person re-identification (TI-ReID) aims to provide a descriptive sentence to find a specific person in the gallery. The task is very challenging due to the huge feature differences between both image and text descriptions. Currently, most approaches use the idea of combining global and local features to get more fine-grained features. However, these methods usually acquire local features with the help of human pose or segmentation models, which makes it difficult to use in realistic scenarios due to the introduction of additional models or complex training evaluation strategies. To facilitate practical applications, we propose a BERT-based framework for dual-path TI-ReID. Without the help of additional models, our approach directly employs visual attention in the global feature extraction network to allow the network to adaptively learn to focus on salient local features in image and text descriptions, which enhances the network’s attention to local information through a visual attention mechanism, thus strengthening the global feature representation and effectively improving the global feature representation. In addition, to learn text and image modality invariant feature representations, we propose a convolutional shared network (CSN) to learn image and text features together. To optimize cross-modal feature distances more effectively, we propose a global hybrid modal triplet global metric loss. In addition to combining local metric learning and global metric learning, we also introduce the CMPM loss and CMPC loss to jointly optimize the proposed model. Extensive experiments on the CUHK-PEDES dataset show that the proposed method performs significantly better than the current research results, achieving a Rank-1/mAP accuracy of 66.27%/ 57.04%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
2秒前
扶风完成签到,获得积分10
2秒前
等待发布了新的文献求助10
3秒前
4秒前
CodeCraft应助DJDJ采纳,获得10
5秒前
DIDI完成签到,获得积分10
5秒前
lxp发布了新的文献求助10
9秒前
warden完成签到 ,获得积分10
9秒前
9秒前
11秒前
yuxiaohua完成签到,获得积分20
12秒前
13秒前
朱务能发布了新的文献求助10
13秒前
顾矜应助Khalil采纳,获得10
14秒前
tranphucthinh完成签到,获得积分0
15秒前
16秒前
Trevor2021完成签到,获得积分10
16秒前
执着乐双发布了新的文献求助10
17秒前
DJDJ发布了新的文献求助10
18秒前
aa完成签到,获得积分10
19秒前
123发布了新的文献求助10
21秒前
22秒前
DJDJ完成签到,获得积分20
25秒前
26秒前
01发布了新的文献求助10
29秒前
29秒前
111发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
34秒前
西莫发布了新的文献求助10
34秒前
34秒前
Hello应助111采纳,获得10
35秒前
缥缈青烟发布了新的文献求助10
37秒前
风清扬发布了新的文献求助10
37秒前
37秒前
方百招发布了新的文献求助10
38秒前
TT2022发布了新的文献求助10
38秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712