Reconstructing Long‐Term Forest Age of China by Combining Forest Inventories, Satellite‐Based Forest Age and Forest Cover Data Sets

森林资源清查 森林生态学 植树造林 中国 森林动态 地理 次生林 森林经营 森林恢复 碳汇 森林覆盖 老林 林业 环境科学 自然地理学 生态系统 生态学 考古 生物
作者
Jiangzhou Xia,Xiaosheng Xia,Chen Yang,Ruoque Shen,Zheyuan Zhang,Boyi Liang,Jia Wang,Wenping Yuan
出处
期刊:Journal Of Geophysical Research: Biogeosciences [Wiley]
卷期号:128 (7) 被引量:12
标识
DOI:10.1029/2023jg007492
摘要

Abstract Forest age is one of the most important ecosystem characters for accurately estimating the magnitude and potential of carbon sink in forest ecosystems. During the past 40 years, national ecological restoration projects have led to the near doubling of the forest cover area in China, which has also substantially affected the dynamics of forest age. Therefore, there is an urgent need to generate long‐term forest age maps for China. This study reconstructed China forest age datasets (CFAD) from 1980 to 2015 at five year intervals at a 1 km spatial resolution by merging a satellite‐based forest age map in 2010 and forest cover dynamic maps from 1980 to 2015. The random forest method was used to reconstruct the forest age where forest age could not be inferred from the forest age base map in 2010 directly. CFAD showed a good agreement with the province‐level mean forest age derived from the several national forest inventories ( R 2 ranged from 0.66 to 0.86). In general, the younger forests are mainly distributed in southern and eastern China. The older forests are mainly distributed in the mountain areas of northeast, northwest and southwest China. The average age of China's forests increased from 18.2 to 44.0 years old from 1980 to 2015. Based on the current forest age and future afforestation planning, the average forest age in China is predicted to reach 71.6 years old in 2060. The CFAD provides an alternative data set to obtain improved estimates of local and national forest carbon sinks in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangZhang发布了新的文献求助30
1秒前
2秒前
背后的小白菜完成签到,获得积分10
4秒前
叶玉雯完成签到 ,获得积分20
5秒前
充电小子完成签到 ,获得积分10
6秒前
粗犷的凌兰完成签到,获得积分10
6秒前
Akim应助方向采纳,获得10
7秒前
烟花应助木中一采纳,获得10
8秒前
李健应助走过的风采纳,获得10
8秒前
8秒前
ASHhan111完成签到,获得积分10
8秒前
叶玉雯关注了科研通微信公众号
10秒前
gua完成签到 ,获得积分10
10秒前
啦啦完成签到 ,获得积分10
11秒前
sube完成签到,获得积分10
11秒前
张大星完成签到 ,获得积分10
13秒前
秦屿发布了新的文献求助10
16秒前
ziwei完成签到 ,获得积分10
16秒前
Orange应助123asd采纳,获得10
17秒前
星辰大海应助123asd采纳,获得10
17秒前
17秒前
17秒前
Tohka完成签到 ,获得积分10
18秒前
科研通AI6应助dzh采纳,获得10
18秒前
一颗松应助马雪滢采纳,获得10
18秒前
18秒前
123别认出我完成签到,获得积分10
19秒前
义气的断秋完成签到,获得积分10
20秒前
20秒前
Red完成签到,获得积分10
21秒前
夏xx完成签到 ,获得积分10
22秒前
小一完成签到,获得积分10
22秒前
livo发布了新的文献求助10
22秒前
emeqwq发布了新的文献求助10
23秒前
Red发布了新的文献求助10
25秒前
Syun完成签到,获得积分10
26秒前
美丽的冰枫完成签到,获得积分10
27秒前
28秒前
科研通AI5应助归尘采纳,获得10
29秒前
emeqwq完成签到,获得积分10
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430