气凝胶
材料科学
复合材料
可加工性
保温
脆性
韧性
陶瓷
超临界干燥
热的
聚合物
冶金
机械加工
物理
气象学
图层(电子)
作者
Xin‐Cen Lin,Shu‐Liang Li,Wenxiong Li,Zi‐Hao Wang,Xiaomei Zhang,Bowen Liu,Teng Fu,Haibo Zhao,Yu‐Zhong Wang
标识
DOI:10.1002/adfm.202214913
摘要
Abstract High‐performance thermal insulating aerogels are attractive candidates for thermal protection in extreme environments. However, inorganic aerogels’ brittleness and poor machinability limit their applications, while organic aerogels suffer from severe strength degradation and structural collapse at high temperatures. Herein, for the first time, a thermo‐responsive self‐ceramifiable aerogel is demonstrated with exceptional strengthening and thermal insulation at high temperatures. This aerogel exhibits excellent toughness and processability like polymers under normal conditions but spontaneously transforms into high‐strength semi‐crystalline hard ceramics upon exposure to high temperatures. After prolonged thermal attack at 800 °C, the strength of the aerogels does not decrease but significantly increases several‐fold (from 0.739 to 2.726 MPa). The self‐ceramization behavior and mechanism of the aerogel are illustrated in detail. The unique self‐ceramifiable capacity enables aerogels to provide fire resistance, high‐strength support, and excellent thermal insulation at ultrahigh temperatures. Even with continuous burning at 1300 °C for 60 min, the 15 mm thick aerogel shows low backside temperature below 300 °C, crack‐free overall structure, and invariant porous morphology. This self‐ceramifiable aerogel opens up a new avenue for developing thermal‐protection materials with toughness, machinability, high strength, and thermal insulation in extreme environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI