脑缺血
化学
缺氧(环境)
缺血
神经科学
内科学
医学
氧气
生物
有机化学
作者
Yanhong Chen,Jia Huang
标识
DOI:10.1615/critreveukaryotgeneexpr.2024054011
摘要
FTO alpha-ketoglutarate dependent dioxygenase (FTO) is aberrantly expressed in brain disorders. However, the roles of FTO in neonatal hypoxic-ischemic brain injury (HIE) are still unclear. This study aims to investigate the potential of FTO in neonatal HIE. Oxygen-glucose deprivation (OGD) was used to establish HIE in vitro. mRNA levels were detected by real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by Western blot. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), ferrous iron (Fe2+) and glutathione (GSH) was detected by specific kit. m6A sites were analyzed using SRAMP and further verify by methylated RNA immunoprecipitation (MeRIP) assay. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. Cell death was determined by propidium iodide (PI) staining. FTO was downregulated in patients with neonatal HIE and OGD-treated neurons. Moreover, FTO mRNA expression was decreased in ferroptosis inducer, especially ferric ammonium citrate (FAC). However, overexpression of FTO inhibited the ferroptosis of neurons. Moreover, FTO-mediated N6-methyladenosine (m6A) modification of ferritin heavy chain 1 (FTH1) suppressed its mRNA expression and stability, inhibiting its protein expression. However, overexpression of FTH1 abrogated the effects of FTO and promoted the ferroptosis of neurons. In summary, FTO functions as a protective role in neonatal HIE via inhibiting FTH1 signaling. Thence, targeting may be a promising strategy for FTO neonatal HIE.
科研通智能强力驱动
Strongly Powered by AbleSci AI