Improvement of NIR prediction ability by dual model optimization in fusion of NSIA and SA methods

特征选择 分类 模拟退火 计算机科学 模式识别(心理学) 融合 人口 样品(材料) 特征(语言学) 人工智能 算法 数学 化学 哲学 语言学 人口学 色谱法 社会学
作者
Chunting Li,Huazhou Chen,Youyou Zhang,Shaoyong Hong,Wu Ai,Lina Mo
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:276: 121247-121247 被引量:14
标识
DOI:10.1016/j.saa.2022.121247
摘要

Feature selection and sample partitioning are both important to establish a quantitative analytical model for near-infrared (NIR) spectroscopy. The classical interval partial least squares (iPLS) model for waveband selection can be improved in combination of the simulated annealing (SA) algorithm. The sample set partitioning based on a joint x-y distance (SPXY) method for sample partitioning is based on the distances of both the x- and y- dimensions; it is expected to be optimized using the non-dominant sorting strategies (NS) combined with the immune algorithm (IA). In this study, we investigated the dual model optimization mode for simultaneous selection of feature waveband and sample partitioning, and proposed a novel method defined as SA-iPLS & SPXY-NSIA. The method explores a population evolution process, and takes the candidate individual as the link for the fusion optimization of SA-iPLS and SPXY-NSIA. The method screens feature wavebands and observes a good partition of the modeling samples, to construct a combined optimization strategy for fusion optimization of the target waveband and suitable sets of sample partitioning. The performance of the SA-iPLS & SPXY-NSIA method was tested using a soil sample dataset. To prove model enhancement, the proposed method was compared to the two traditional methods of Kennard-Stone (KS) and SPXY in combination with SA-iPLS. Experimental results show that the fusion model established by SA-iPLS & SPXY-NSIA performed better than the KS-SA-iPLS and SPXY-SA-iPLS models. The best testing results of the fusion model is with RMSET, RPDT and RT observed as 0.0107, 1.7233 and 0.9097, respectively. The proposed method is prospectively able to effectively improve the predictive ability of the NIR analytical model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
一一得一发布了新的文献求助10
2秒前
3秒前
聪慧大有完成签到,获得积分10
4秒前
4秒前
keep1997完成签到,获得积分10
4秒前
辛苦打工人完成签到,获得积分10
4秒前
sxhyy应助hkh采纳,获得10
4秒前
斯文败类应助hkh采纳,获得10
4秒前
顾矜应助hkh采纳,获得10
4秒前
传奇3应助hkh采纳,获得10
4秒前
CipherSage应助赫连紫采纳,获得10
5秒前
huaming完成签到,获得积分10
5秒前
5秒前
L3完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助喜之郎采纳,获得10
5秒前
Lily发布了新的文献求助10
6秒前
司空无声完成签到,获得积分20
6秒前
Simone完成签到,获得积分20
6秒前
FashionBoy应助zhangyidian采纳,获得50
6秒前
自由可乐应助Hey采纳,获得30
7秒前
核桃花生奶兔完成签到 ,获得积分10
7秒前
自然的致远完成签到,获得积分10
7秒前
抓到你啦完成签到,获得积分10
7秒前
安阳完成签到,获得积分10
7秒前
天Q发布了新的文献求助10
8秒前
Simone发布了新的文献求助10
10秒前
cloverdown发布了新的文献求助20
10秒前
weiwenzuo完成签到,获得积分10
10秒前
gggguo完成签到,获得积分10
10秒前
阿燐发布了新的文献求助10
10秒前
11秒前
11秒前
调研昵称发布了新的文献求助20
11秒前
jing发布了新的文献求助10
11秒前
刻苦的晓蕾完成签到,获得积分10
11秒前
汉堡包应助苻如萱采纳,获得10
12秒前
CodeCraft应助别时圆采纳,获得10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767