Improvement of NIR prediction ability by dual model optimization in fusion of NSIA and SA methods

特征选择 分类 模拟退火 计算机科学 模式识别(心理学) 融合 人口 样品(材料) 特征(语言学) 人工智能 算法 数学 化学 哲学 语言学 人口学 色谱法 社会学
作者
Chunting Li,Huazhou Chen,Youyou Zhang,Shaoyong Hong,Wu Ai,Lina Mo
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:276: 121247-121247 被引量:14
标识
DOI:10.1016/j.saa.2022.121247
摘要

Feature selection and sample partitioning are both important to establish a quantitative analytical model for near-infrared (NIR) spectroscopy. The classical interval partial least squares (iPLS) model for waveband selection can be improved in combination of the simulated annealing (SA) algorithm. The sample set partitioning based on a joint x-y distance (SPXY) method for sample partitioning is based on the distances of both the x- and y- dimensions; it is expected to be optimized using the non-dominant sorting strategies (NS) combined with the immune algorithm (IA). In this study, we investigated the dual model optimization mode for simultaneous selection of feature waveband and sample partitioning, and proposed a novel method defined as SA-iPLS & SPXY-NSIA. The method explores a population evolution process, and takes the candidate individual as the link for the fusion optimization of SA-iPLS and SPXY-NSIA. The method screens feature wavebands and observes a good partition of the modeling samples, to construct a combined optimization strategy for fusion optimization of the target waveband and suitable sets of sample partitioning. The performance of the SA-iPLS & SPXY-NSIA method was tested using a soil sample dataset. To prove model enhancement, the proposed method was compared to the two traditional methods of Kennard-Stone (KS) and SPXY in combination with SA-iPLS. Experimental results show that the fusion model established by SA-iPLS & SPXY-NSIA performed better than the KS-SA-iPLS and SPXY-SA-iPLS models. The best testing results of the fusion model is with RMSET, RPDT and RT observed as 0.0107, 1.7233 and 0.9097, respectively. The proposed method is prospectively able to effectively improve the predictive ability of the NIR analytical model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
can完成签到,获得积分10
2秒前
柠檬不吃酸完成签到 ,获得积分10
3秒前
彦希完成签到 ,获得积分10
3秒前
俭朴的宛完成签到 ,获得积分10
4秒前
研友_Y59785应助bronny采纳,获得10
4秒前
LingYun完成签到,获得积分10
6秒前
8秒前
12秒前
bronny完成签到,获得积分10
12秒前
12秒前
Profeto发布了新的文献求助10
12秒前
天天快乐应助汪汪别吃了采纳,获得10
13秒前
醉熏的宝马完成签到,获得积分10
16秒前
111发布了新的文献求助10
17秒前
谦谦神棍完成签到,获得积分10
18秒前
18秒前
19秒前
Profeto完成签到,获得积分10
19秒前
雷培发布了新的文献求助10
19秒前
20秒前
狂奔弟弟2完成签到 ,获得积分10
21秒前
CodeCraft应助昭昭找不到采纳,获得10
22秒前
23秒前
桃子发布了新的文献求助10
26秒前
26秒前
明小丽完成签到,获得积分10
28秒前
狂奔弟弟完成签到 ,获得积分10
30秒前
李沐唅完成签到 ,获得积分10
30秒前
顾矜应助麟钰采纳,获得10
31秒前
桃子完成签到,获得积分10
32秒前
35秒前
36秒前
迹K完成签到,获得积分10
37秒前
风趣海吃饭侠完成签到 ,获得积分10
39秒前
39秒前
英姑应助科研通管家采纳,获得10
39秒前
桐桐应助科研通管家采纳,获得10
40秒前
张北海应助科研通管家采纳,获得10
40秒前
坦率的匪应助科研通管家采纳,获得10
40秒前
思思发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975