亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learned Distributed Multi-Robot Navigation With Reciprocal Velocity Obstacle Shaped Rewards

强化学习 互惠的 避碰 计算机科学 障碍物 碰撞 避障 新颖性 机器人 人工智能 差速器(机械装置) 移动机器人 工程类 哲学 航空航天工程 政治学 法学 语言学 计算机安全 神学
作者
Ruihua Han,Shengduo Chen,Shuaijun Wang,Zeqing Zhang,Rui Gao,Qi Hao,Jia Pan
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 5896-5903 被引量:75
标识
DOI:10.1109/lra.2022.3161699
摘要

The challenges to solving the collision avoidance problem lie in adaptively choosing optimal robot velocities in complex scenarios full of interactive obstacles. In this letter, we propose a distributed approach for multi-robot navigation which combines the concept of reciprocal velocity obstacle (RVO) and the scheme of deep reinforcement learning (DRL) to solve the reciprocal collision avoidance problem under limited information. The novelty of this work is threefold: (1) using a set of sequential VO and RVO vectors to represent the interactive environmental states of static and dynamic obstacles, respectively; (2) developing a bidirectional recurrent module based neural network, which maps the states of a varying number of surrounding obstacles to the actions directly; (3) developing a RVO area and expected collision time based reward function to encourage reciprocal collision avoidance behaviors and trade off between collision risk and travel time. The proposed policy is trained through simulated scenarios and updated by the actor-critic based DRL algorithm. We validate the policy in complex environments with various numbers of differential drive robots and obstacles. The experiment results demonstrate that our approach outperforms the state-of-art methods and other learning based approaches in terms of the success rate, travel time, and average speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助npknpk采纳,获得10
5秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
YifanWang应助科研通管家采纳,获得30
8秒前
YifanWang应助科研通管家采纳,获得30
8秒前
Ava应助科研通管家采纳,获得10
8秒前
YifanWang应助科研通管家采纳,获得30
8秒前
YifanWang应助科研通管家采纳,获得30
8秒前
10秒前
田田完成签到 ,获得积分10
10秒前
npknpk完成签到,获得积分20
14秒前
Algernoon完成签到,获得积分10
15秒前
16秒前
18秒前
19秒前
跳跃的愫发布了新的文献求助10
20秒前
sys549发布了新的文献求助10
23秒前
23秒前
科研通AI6.1应助utopia采纳,获得10
24秒前
Magic麦发布了新的文献求助10
25秒前
27秒前
30秒前
bzlish发布了新的文献求助10
32秒前
黑神白了发布了新的文献求助20
37秒前
科目三应助bzlish采纳,获得10
39秒前
bzlish完成签到,获得积分10
46秒前
49秒前
53秒前
utopia发布了新的文献求助10
1分钟前
1分钟前
852应助Magic麦采纳,获得10
1分钟前
1分钟前
PP发布了新的文献求助10
1分钟前
PP关闭了PP文献求助
1分钟前
1分钟前
1分钟前
lhr发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Jankin完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642