ICAM-1
单核细胞
整合素
细胞生物学
CD18型
细胞外基质
化学
炎症
细胞粘附分子
信号转导
免疫学
生物
生物化学
受体
作者
Zichao Luo,Erlinda The,Peijian Zhang,Yufeng Zhai,Qingzhou Yao,Lihua Ao,Qingchun Zeng,David A. Fullerton,Xianzhong Meng
标识
DOI:10.1007/s00011-022-01566-2
摘要
Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study.Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against β2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied.AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte β2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing β2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture.Monocyte β2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.
科研通智能强力驱动
Strongly Powered by AbleSci AI