纤维增强塑料
材料科学
复合材料
压力(语言学)
结构工程
剪应力
弯曲
复合数
剪切(地质)
刚度
流离失所(心理学)
工程类
心理学
哲学
语言学
心理治疗师
作者
Christian Carloni,Kolluru V. L. Subramaniam
标识
DOI:10.1016/j.compstruct.2010.05.024
摘要
Interface cohesive stress transfer between FRP and concrete during debonding is typically obtained using measured surface strains on the FRP, along the direction of the fibers. The cohesive material law is derived under a set of assumptions which include: (a) the bending stiffness of the FRP laminate is insignificant with respect to that of the concrete test block; (b) the strains in the bulk concrete produced by debonding are negligible, thus concrete substrate can be considered rigid; (c) there is stress transfer between FRP and concrete through the FRP–concrete interface which is of zero thickness; and (d) the axial strain in the FRP composite is uniform across its thickness. In this paper, a test procedure for directly obtaining the through-thickness strains in the FRP and the concrete substrate during cohesive stress transfer associated with debonding is presented. The displacement and strain fields are measured on the side of a direct-shear specimen with the FRP strip attached on the edge. Based on the experimental results, the influence of the assumptions which have been introduced to determine the cohesive law is discussed. Within the stress transfer zone there is a sharp gradient in the shear strain. The location of the interface crack within the stress transfer zone and the cohesive stress transfer during the propagation of the interface crack are determined.
科研通智能强力驱动
Strongly Powered by AbleSci AI