MCF-7型
癌细胞
生物
代谢途径
乳腺癌
新陈代谢
癌症研究
糖酵解
酶
癌症
化学
生物化学
遗传学
人体乳房
作者
Costas Koufaris,Suchira Gallage,Tianlai Yang,Chung-Ho E Lau,Gabriel N. Valbuena,Hector C. Keun
标识
DOI:10.1021/acs.jproteome.6b00188
摘要
Methylenetetrahydrofolate dehydrogenase (NAD(P)+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2) is a mitochondrial enzyme involved in folate metabolism. A number of recent studies have highlighted this enzyme as being highly expressed in many solid tumors, including breast cancer, and to be correlated with poor survival. However, the metabolic functions of MTHFD2 in cancer cells have not been well-defined. To investigate the function of MTHFD2 in breast cancer cells, we generated and characterized MCF-7 cells with stable suppression of MTHFD2 expression using a combination of cellular assays and metabolic profiling. Loss of MTHFD2 caused MCF7 cells to become glycine auxotrophs, that is, reliant on exogenous glycine, and more sensitive to exogenous folate depletion. Another prominent metabolic alteration observed as a consequence of MTHFD2 suppression was a more glycolytic phenotype, consistent with widespread modifications of cellular metabolism. Collectively, these data suggest that targeting MTHFD2 activity is likely to influence multiple metabolic pathways in breast cancer and could be combined with a range of antimetabolite therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI