The flaws of policies requiring human oversight of government algorithms

政府(语言学) 代理(哲学) 问责 算法 民主 计算机科学 法律与经济学 经济 政治学 法学 政治 社会学 社会科学 语言学 哲学
作者
Ben Green
出处
期刊:Computer Law & Security Review [Elsevier]
卷期号:45: 105681-105681 被引量:63
标识
DOI:10.1016/j.clsr.2022.105681
摘要

As algorithms become an influential component of government decision-making around the world, policymakers have debated how governments can attain the benefits of algorithms while preventing the harms of algorithms. One mechanism that has become a centerpiece of global efforts to regulate government algorithms is to require human oversight of algorithmic decisions. Despite the widespread turn to human oversight, these policies rest on an uninterrogated assumption: that people are able to effectively oversee algorithmic decision-making. In this article, I survey 41 policies that prescribe human oversight of government algorithms and find that they suffer from two significant flaws. First, evidence suggests that people are unable to perform the desired oversight functions. Second, as a result of the first flaw, human oversight policies legitimize government uses of faulty and controversial algorithms without addressing the fundamental issues with these tools. Thus, rather than protect against the potential harms of algorithmic decision-making in government, human oversight policies provide a false sense of security in adopting algorithms and enable vendors and agencies to shirk accountability for algorithmic harms. In light of these flaws, I propose a shift from human oversight to institutional oversight as the central mechanism for regulating government algorithms. This institutional approach operates in two stages. First, agencies must justify that it is appropriate to incorporate an algorithm into decision-making and that any proposed forms of human oversight are supported by empirical evidence. Second, these justifications must receive democratic public review and approval before the agency can adopt the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的猪完成签到,获得积分10
刚刚
淡定如之发布了新的文献求助10
刚刚
ppf发布了新的文献求助10
1秒前
有风的地方完成签到 ,获得积分10
1秒前
Dprisk发布了新的文献求助10
1秒前
高帮白袜完成签到,获得积分10
2秒前
深情安青应助Yuxiao采纳,获得10
2秒前
小谢完成签到,获得积分10
2秒前
精明俊驰应助文件撤销了驳回
3秒前
nn发布了新的文献求助10
3秒前
4秒前
6秒前
闪电完成签到,获得积分10
6秒前
aikeyan发布了新的文献求助10
6秒前
Ethan完成签到,获得积分10
6秒前
36456657应助小草采纳,获得10
8秒前
庄怀逸完成签到 ,获得积分10
9秒前
April完成签到 ,获得积分10
9秒前
9秒前
TG_FY完成签到,获得积分10
10秒前
PanGanlin完成签到,获得积分20
10秒前
10秒前
毛豆应助纪不愁采纳,获得10
10秒前
10秒前
10秒前
CodeCraft应助淡定如之采纳,获得10
11秒前
Linica发布了新的文献求助10
11秒前
南海的猫完成签到,获得积分10
11秒前
张丽娟发布了新的文献求助10
11秒前
Qiqi应助PanGanlin采纳,获得10
13秒前
14秒前
晨时明月发布了新的文献求助10
14秒前
序与海完成签到,获得积分10
14秒前
membrane应助Billy采纳,获得10
15秒前
婷ting发布了新的文献求助10
16秒前
lalala应助无限的数据线采纳,获得10
17秒前
烟花应助caleb采纳,获得10
17秒前
18秒前
18秒前
lalala应助长歌采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650