Lung proteomic biomarkers associated with chronic obstructive pulmonary disease

慢性阻塞性肺病 肺病 肺病 医学 阻塞性肺病 病理 内科学
作者
Yuhang Zhang,Michael R. Hoopmann,Peter J. Castaldi,Kirsten A. Simonsen,Mukul K. Midha,Michael H. Cho,Gerard J. Criner,Raphael Bueno,Jiangyuan Liu,Robert L. Moritz,Edwin K. Silverman
出处
期刊:American Journal of Physiology-lung Cellular and Molecular Physiology [American Physiological Society]
卷期号:321 (6): L1119-L1130 被引量:14
标识
DOI:10.1152/ajplung.00198.2021
摘要

Identifying protein biomarkers for chronic obstructive pulmonary disease (COPD) has been challenging. Most previous studies have used individual proteins or preselected protein panels measured in blood samples. Mass spectrometry proteomic studies of lung tissue have been based on small sample sizes. We used mass spectrometry proteomic approaches to discover protein biomarkers from 150 lung tissue samples representing COPD cases and controls. Top COPD-associated proteins were identified based on multiple linear regression analysis with false discovery rate (FDR) < 0.05. Correlations between pairs of COPD-associated proteins were examined. Machine learning models were also evaluated to identify potential combinations of protein biomarkers related to COPD. We identified 4,407 proteins passing quality controls. Twenty-five proteins were significantly associated with COPD at FDR < 0.05, including interleukin 33, ferritin (light chain and heavy chain), and two proteins related to caveolae (CAV1 and CAVIN1). Multiple previously reported plasma protein biomarkers for COPD were not significantly associated with proteomic analysis of COPD in lung tissue, although RAGE was borderline significant. Eleven pairs of top significant proteins were highly correlated ( r > 0.8), including several strongly correlated with RAGE (EHD2 and CAVIN1). Machine learning models using Random Forests with the top 5% of protein biomarkers demonstrated reasonable accuracy (0.707) and area under the curve (0.714) for COPD prediction. Mass spectrometry-based proteomic analysis of lung tissue is a promising approach for the identification of biomarkers for COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助lance采纳,获得10
1秒前
臭臭发布了新的文献求助10
1秒前
无花果应助靓仔采纳,获得10
3秒前
dsa2815发布了新的文献求助10
3秒前
3秒前
Xian完成签到,获得积分10
4秒前
超级的月亮应助狗狗明明采纳,获得10
5秒前
5秒前
5秒前
5秒前
xiaohongmao发布了新的文献求助10
5秒前
syalonyui完成签到,获得积分10
5秒前
Autumnuer完成签到,获得积分10
6秒前
嗨害完成签到,获得积分20
8秒前
8秒前
8秒前
xu发布了新的文献求助10
10秒前
汉堡包应助tantttt采纳,获得10
13秒前
山丘发布了新的文献求助10
13秒前
圆圈儿给圆圈儿的求助进行了留言
14秒前
李健应助嗨害采纳,获得10
14秒前
儒雅的斑马完成签到,获得积分10
16秒前
隐形曼青应助Autumnuer采纳,获得10
17秒前
孔骁完成签到,获得积分10
17秒前
阡陌完成签到 ,获得积分10
18秒前
20秒前
20秒前
22秒前
22秒前
22秒前
orixero应助dsa2815采纳,获得10
23秒前
Jane发布了新的文献求助10
24秒前
25秒前
26秒前
听弦完成签到,获得积分10
27秒前
给好评发布了新的文献求助10
27秒前
leilei发布了新的文献求助10
27秒前
隐形曼青应助XYZ采纳,获得30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459643
求助须知:如何正确求助?哪些是违规求助? 3053952
关于积分的说明 9039561
捐赠科研通 2743320
什么是DOI,文献DOI怎么找? 1504760
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699