材料科学
氧化铁纳米粒子
点击化学
纳米颗粒
糖肽
磁性纳米粒子
多巴胺
纳米技术
麦芽糖
组合化学
化学工程
有机化学
高分子化学
生物化学
酶
化学
工程类
抗生素
神经科学
生物
作者
Changfen Bi,Yingran Zhao,Lijin Shen,Kai Zhang,Xiwen He,Langxing Chen,Yukui Zhang
标识
DOI:10.1021/acsami.5b06991
摘要
The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng μL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.
科研通智能强力驱动
Strongly Powered by AbleSci AI