已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fatigue Analysis of Flexible Riser Using Hybrid Machine Learning

盔甲 结构工程 人工神经网络 参数统计 极限抗拉强度 弯曲 钻井隔水管 工程类 材料科学 计算机科学 机械工程 图层(电子) 人工智能 复合材料 统计 钻探 数学
作者
Subrata Bhowmik
出处
期刊:Offshore Technology Conference Asia
标识
DOI:10.4043/30372-ms
摘要

Abstract This paper presents a novel hybrid machine learning methodology for evaluating the fatigue life of a flexible riser on long term environmental loading. Flexible risers are multi-layered structures made of several layers including pressure armour and tensile armour layers, out of which tensile armour layer is more prone to fatigue damage of flexible riser on long term environmental loading. The evaluation of stresses on the tensile armour layer is a complicated method due to friction acting between the internal layers. The friction coefficients between layers are calculated using analytical method proposed by Saevik [1] and used as a training data set for the Artificial Neural Network(ANN) model. Hybrid Machine Learning (Back Propagation Neural Network + Generic Algorithm) is used in the proposed fatigue damage estimation method. Global fatigue analysis of a flexible riser has been performed with environmental loading. The effective tension and bending moments are evaluated in the global analysis and used as inputs to the proposed Hybrid Machine Learning model to calculate the stresses in the tensile armour layer. The fatigue life of the riser based on the predicted stresses is computed using the rainflow counting method. A case study is described for a 12" diameter flexible riser with from turret moored FPSO with typical north-sea environmental loading is applied for demonstrating the methodology. The proposed hybrid method is a nonlinear parametric model where the parameters are optimised based on Genetic Algorithm based ANN model and the to predict stress on tensile armour from two primary input; bending moment and effective tension. The hybrid model is quite useful to evaluate the fatigue damage prediction on tensile armour layer. Comparing the fatigue life calculated from the proposed hybrid method and the analytical approach focuses on a nonlinear, friction coefficient dependent model [1], it is clearly visible that there is good agreement between both results. The proposed method is a Machine Learning based predictive model and can be used as an alternative tool for predicting fatigue damage in the flexible riser
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
不想长大发布了新的文献求助10
3秒前
称心太阳发布了新的文献求助10
4秒前
机智的思山完成签到 ,获得积分10
7秒前
谨慎的荠发布了新的文献求助10
8秒前
xu完成签到 ,获得积分10
8秒前
11秒前
Sunny发布了新的文献求助10
16秒前
刘建章完成签到 ,获得积分10
18秒前
喔喔佳佳L完成签到 ,获得积分10
23秒前
桐桐应助Sunny采纳,获得10
25秒前
taotao发布了新的文献求助10
29秒前
几米完成签到 ,获得积分10
31秒前
自由度完成签到,获得积分10
34秒前
38秒前
光亮的自行车完成签到 ,获得积分10
41秒前
一个达不溜完成签到,获得积分10
42秒前
Luuu发布了新的文献求助10
43秒前
48秒前
km6279完成签到,获得积分10
55秒前
烟花应助minya采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
wax应助科研通管家采纳,获得10
1分钟前
清风浮云完成签到,获得积分10
1分钟前
LL完成签到,获得积分10
1分钟前
慕斯完成签到,获得积分10
1分钟前
1分钟前
Wilson完成签到 ,获得积分10
1分钟前
frddxc48发布了新的文献求助10
1分钟前
李友健完成签到 ,获得积分10
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
科研人完成签到 ,获得积分10
1分钟前
DESERVE.发布了新的文献求助10
1分钟前
1分钟前
linclee发布了新的文献求助100
1分钟前
1分钟前
好好完成签到,获得积分10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658999
捐赠科研通 2653866
什么是DOI,文献DOI怎么找? 1453336
科研通“疑难数据库(出版商)”最低求助积分说明 672870
邀请新用户注册赠送积分活动 662808