Superior cryogenic toughness of high-Mn austenitic steel by welding thermal cycles: The role of grain boundary evolution

夏比冲击试验 材料科学 晶界 奥氏体 电子背散射衍射 冶金 韧性 焊接 奥氏体不锈钢 复合材料 微观结构 腐蚀
作者
H.H. Wang,Lingchao Meng,Qiang Luo,Chaoyang Sun,Guangqiang Li,Xiangliang Wan
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:788: 139573-139573 被引量:24
标识
DOI:10.1016/j.msea.2020.139573
摘要

The high-Mn austenitic steel is expected to improve mechanical properties by grain boundary adjustment. The role of grain boundary on cryogenic toughness of high-Mn austenitic steel subjected to various welding thermal cycle was investigated by the means of instrumented Charpy V-notch impact tests and electron backscatter diffraction (EBSD) analysis. The absorbed energy of samples at −196 °C decreased from 203 J to 163 J with the increase of peak temperature from 600 °C to 900 °C. When the peak temperature increased to 1000 °C, 1100 °C and 1300 °C, the absorbed energy of sample increased to 185 J, 204 J and 196 J, respectively. Phase transformation and abnormal grain growth were absent in the samples. The lowest cryogenic toughness in sample with the peak temperature of 900 °C was thus attributed to the highest proportion of the special grain boundary ∑3. Furthermore, during the cryogenic impact test, the crack formation energy was corresponded to the proportion change of the low angle boundary. While, the crack propagation energy was closely related to the proportion change of special grain boundary of ∑3 rather than the high fraction of ∑3 by welding thermal cycle. It is proposed that the increasing low angle boundary of 2–5° and the activation ∑3 special grain boundary are responsible for the superior cryogenic toughness for high-Mn austenitic steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhao发布了新的文献求助10
1秒前
chenqiumu应助Laura567采纳,获得30
1秒前
1秒前
1秒前
2秒前
2秒前
Ying完成签到,获得积分10
3秒前
4秒前
Ava应助汽水采纳,获得10
5秒前
可靠的依凝完成签到,获得积分10
5秒前
一天完成签到,获得积分10
5秒前
睦月发布了新的文献求助10
6秒前
Ying发布了新的文献求助10
6秒前
1111发布了新的文献求助10
6秒前
整齐从蓉完成签到 ,获得积分20
6秒前
风凌发布了新的文献求助10
6秒前
展锋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
灼灼朗朗完成签到,获得积分10
7秒前
@小小搬砖瑞完成签到,获得积分10
7秒前
7秒前
8秒前
Gu完成签到,获得积分10
8秒前
红烧肉耶完成签到 ,获得积分10
9秒前
9秒前
9秒前
wjx发布了新的文献求助10
10秒前
充电宝应助王小果采纳,获得10
10秒前
11秒前
11秒前
11秒前
terryok发布了新的文献求助10
11秒前
李青溟发布了新的文献求助10
12秒前
刘47发布了新的文献求助10
13秒前
Gu发布了新的文献求助10
13秒前
qwp发布了新的文献求助10
13秒前
畅快代柔发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393