肺动脉高压
医学
内科学
肌肉肥大
血管舒张
信号转导
转化生长因子
肺
骨形态发生蛋白
内分泌学
癌症研究
激活素受体
BMPR2型
细胞生物学
生物
受体
化学
生物化学
基因
作者
Lai‐Ming Yung,Peiran Yang,Sachindra R. Joshi,Zachary M. Augur,Stephanie S. Kim,Geoffrey A. Bocobo,Teresa Dinter,Luca Troncone,Po-Sheng Chen,Megan McNeil,Mark Southwood,Sergio Poli,John L. Knopf,Iván O. Rosas,Dianne Sako,R. Scott Pearsall,John D. Quisel,Gang Li,Ravindra Kumar,Paul B. Yu
标识
DOI:10.1126/scitranslmed.aaz5660
摘要
Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-β (TGFβ) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFβ, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.
科研通智能强力驱动
Strongly Powered by AbleSci AI