Deep learning model-assisted detection of kidney stones on computed tomography

冠状面 医学 矢状面 肾结石 计算机断层摄影术 深度学习 放射科 核医学 人工智能 外科 计算机科学
作者
Alper Çağlayan,Mustafa Ozan Horsanalı,Kenan Kocadurdu,Eren Ismailoglu,Serkan Guneyli
出处
期刊:International Braz J Urol [SciELO]
卷期号:48 (5): 830-839 被引量:44
标识
DOI:10.1590/s1677-5538.ibju.2022.0132
摘要

The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images.This retrospective study included 455 patients who underwent CT scanning for kidney stones between January 2016 and January 2020; of them, 405 were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0-1 cm, 1-2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, these CT images were evaluated using a deep learning model. The accuracy rate, sensitivity, specificity, and positive and negative predictive values of the deep learning model were determined.The training group accuracy rates of the deep learning model were 98.2%, 99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group accuracy rates of the deep learning model were 78%, 68% and 70% in the axial plane; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal plane, respectively.The use of deep learning algorithms for the detection of kidney stones is reliable and effective. Additionally, these algorithms can reduce the reporting time and cost of CT-dependent urolithiasis detection, leading to early diagnosis and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JMrider完成签到,获得积分10
刚刚
Jiuuu发布了新的文献求助10
1秒前
3秒前
di完成签到,获得积分10
4秒前
奋斗枫完成签到,获得积分10
4秒前
6秒前
7秒前
丁丁丁完成签到,获得积分10
7秒前
7秒前
浣熊小呆完成签到,获得积分10
9秒前
顺心真完成签到,获得积分10
9秒前
卛e发布了新的文献求助10
9秒前
10秒前
平常的太英完成签到,获得积分10
11秒前
12秒前
侠医2012发布了新的文献求助10
12秒前
阔达的凡发布了新的文献求助10
13秒前
彩色半烟完成签到,获得积分10
15秒前
17秒前
hull完成签到,获得积分10
17秒前
彩色半烟发布了新的文献求助30
18秒前
18秒前
浣熊小呆完成签到,获得积分10
19秒前
19秒前
SciGPT应助椒盐柠檬茶采纳,获得30
21秒前
大秦帝国完成签到,获得积分10
22秒前
小黄鱼完成签到 ,获得积分10
23秒前
23秒前
24秒前
summer发布了新的文献求助10
24秒前
鲜于夜白发布了新的文献求助10
25秒前
小跳完成签到,获得积分10
26秒前
酷炫灵安完成签到,获得积分10
26秒前
顺心寻云完成签到,获得积分20
26秒前
烟花应助斯文的山兰采纳,获得10
27秒前
TranYan完成签到,获得积分10
29秒前
小小苏发布了新的文献求助10
30秒前
个性的安白完成签到 ,获得积分10
30秒前
打工人不酷完成签到 ,获得积分10
32秒前
iNk应助坚定的剑通采纳,获得20
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254080
求助须知:如何正确求助?哪些是违规求助? 2896409
关于积分的说明 8292562
捐赠科研通 2565288
什么是DOI,文献DOI怎么找? 1392945
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856