Rapid Estimation of Seismic Intensities Using a New Algorithm That Incorporates Array Technologies and Ground-Motion Prediction Equations (GMPEs)

地震学 地质学 强度(物理) 地震灾害 地震动 峰值地面加速度 地震模拟 振幅 断层(地质) 强地震动 大地测量学 算法 计算机科学 物理 量子力学
作者
Wenkai Chen,Dun Wang,Hongjun Si,Can Zhang
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:112 (3): 1647-1661 被引量:11
标识
DOI:10.1785/0120210207
摘要

ABSTRACT Rapid seismic intensity maps for damaging earthquakes enable the swift implementation of earthquake disaster mitigation action, issuance of accurate tsunami warnings, and prevention of associated secondary disasters. However, many countries lack dense local seismic observation networks, making it infeasible to obtain accurate seismic intensity maps of earthquakes within a few hours, particularly for earthquakes that have considerable source extents. In this study, we developed a new algorithm for rapidly obtaining seismic intensity maps of damaging earthquakes. With our model, source energy radiation is acquired using backprojection, and then the locations and relative amplitudes of the fault geometry and subevents are determined. Peak ground accelerations and peak ground velocities (PGVs) are subsequently calculated based on ground-motion prediction equations and the distribution of the estimated subevents. PGVs are then further site-corrected using the VS30 database (Wald and Allen, 2007; Heath et al., 2020). The algorithm was applied to the 2008 Mw 7.9 Wenchuan and 2010 Mw 6.9 Yushu earthquakes, and the resulting seismic intensity maps were highly similar to those generated by field surveys. The algorithm is simple and straightforward to use, and local real-time instrument observations are not required. Calculations can be performed automatically, and reliable seismic intensity maps can be issued within 30 min following damaging earthquakes. The model’s application may assist greatly with rescue and recovery efforts, and enable tsunami hazards to be evaluated immediately following earthquakes, particularly in regions lacking dense observation networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyun完成签到,获得积分10
1秒前
lixm发布了新的文献求助10
5秒前
7秒前
研友_VZG7GZ应助务实的犀牛采纳,获得10
8秒前
9秒前
狂野代桃发布了新的文献求助10
12秒前
加菲丰丰应助Anquan采纳,获得30
12秒前
biubiu完成签到,获得积分10
13秒前
茶茶发布了新的文献求助10
13秒前
15秒前
酷波er应助健忘捕采纳,获得10
15秒前
李健应助irisjlj采纳,获得10
17秒前
001完成签到 ,获得积分20
18秒前
sgjj33完成签到,获得积分10
20秒前
情怀应助凝子老师采纳,获得10
21秒前
迪丽盐巴完成签到,获得积分10
22秒前
26秒前
27秒前
合适的致远完成签到,获得积分10
29秒前
小马甲应助sgjj33采纳,获得10
31秒前
所所应助奋斗灵波采纳,获得10
32秒前
33秒前
慌糖完成签到,获得积分10
34秒前
liu完成签到,获得积分10
36秒前
柔弱凡松发布了新的文献求助10
38秒前
38秒前
40秒前
QQQQ发布了新的文献求助20
40秒前
zy完成签到 ,获得积分10
40秒前
坦率若颜发布了新的文献求助10
44秒前
terence应助YYJ25采纳,获得10
45秒前
47秒前
49秒前
49秒前
JianminLuo完成签到 ,获得积分10
50秒前
慌糖发布了新的文献求助10
50秒前
贪玩语蓉完成签到,获得积分10
51秒前
52秒前
heidi发布了新的文献求助10
53秒前
53秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851