[Application of artificial intelligence-assisted diagnosis for cervical liquid-based thin-layer cytology].

液基细胞学 人工智能 宫颈癌 薄层 贝塞斯达系统 细胞学 人工智能系统 医学 巴氏染色 计算机科学 病理 癌症 图层(电子) 内科学 材料科学 复合材料
作者
X H Zhu,X M Li,W L Zhang,Mingrui Liao,Ying Li,Fangfang Wang,Baoping Shang,Lulu Peng,Yu-meng Su,Zuhui You,Jingchuan Shi,Weifeng Zhong,Xie Liang,Chunjuan Liang,Li Liang,Weixiang Liao,Yan-qing Ding
出处
期刊:Chinese Journal of Pathology [Chinese Medical Association]
卷期号:50 (4): 333-338 被引量:6
标识
DOI:10.3760/cma.j.cn112151-20201013-00780
摘要

Objective: To explore the application value of artificial intelligence-assisted diagnosis system for TBS report in cervical cancer screening. Methods: A total of 16 317 clinical samples and related data of cervical liquid-based thin-layer cell smears, which were obtained from July 2020 to September 2020, were collected from Southern Hospital, Guangzhou Huayin Medical Inspection Center, Shenzhen Bao'an People's Hospital(Group) and Changsha Yuan'an Biotechnology Co., Ltd. The TBS report artificial intelligence-assisted diagnosis system of cervical liquid-based thin-layer cytology jointly developed by Southern Medical University and Guangzhou F. Q. PATHOTECH Co., Ltd. based on deep learning convolution neural network was used to diagnose all clinical samples. The sensitivity,specificity and accuracy of both artificial intelligence-assisted diagnosis system and cytologists using artificial intelligence-assisted diagnosis system were analyzed based on the evaluation standard(2014 TBS). The time spent by the two methods was also compared. Results: The sensitivity of artificial intelligence-assisted diagnosis system in predicting cervical intraepithelial lesions and other lesions (including endometrial cells detected in women over 45 years old and infectious lesions) under different production methods, different cytoplasmic staining and different scanning instruments was 92.90% and 83.55% respectively, and the specificity of negative samples was 87.02%, while that of cytologists using artificial intelligence-assisted diagnosis system was 99.34%, 97.79% and 99.10%, respectively. Moreover, cytologists using artificial intelligence-assisted diagnosis system could save about 6 times of reading time than manual. Conclusions: Artificial intelligence-assisted diagnosis system for TBS report of cervical liquid-based thin-layer cytology has the advantages of high sensitivity, high specificity and strong generalization. Cytologists can significantly improve the accuracy and work efficiency of reading smears by using artificial intelligence-assisted diagnosis system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡夫俗子完成签到,获得积分10
刚刚
余晖霞光完成签到 ,获得积分10
刚刚
1秒前
xiubo128完成签到,获得积分10
2秒前
3秒前
wenbo完成签到,获得积分10
3秒前
Stella完成签到,获得积分20
5秒前
100发布了新的文献求助10
5秒前
汤姆猫发布了新的文献求助10
6秒前
苹果路人发布了新的文献求助10
6秒前
猪猪hero应助青果采纳,获得10
8秒前
摩卡应助科研通管家采纳,获得10
10秒前
lilac应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得30
10秒前
慕青应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
lilac应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
lilac应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
lucky完成签到,获得积分10
14秒前
15秒前
不苦完成签到,获得积分10
15秒前
rrrrrr发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI5应助runtang采纳,获得10
18秒前
xhm发布了新的文献求助10
19秒前
英俊的筝完成签到,获得积分10
20秒前
长生发布了新的文献求助10
20秒前
叮当狗发布了新的文献求助10
22秒前
hgf应助细腻的机器猫采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717