摇蚊科
生态学
生物量(生态学)
底栖区
无脊椎动物
生物
昆虫
水生昆虫
海岸
水生植物
海岸带
食物网
捕食
幼虫
水生植物
渔业
标识
DOI:10.1016/s0002-9270(00)01835-9
摘要
Knowing the aquatic resources, such as emerging insects, that are entering terrestrial systems is important for food web and conservation studies, especially when water availability or quality is limited. Even though studies concerning benthic macroinvertebrates are numerous, insect emergence from lakes is less studied.To understand if water parameters (e.g., water temperature, oxygen concentration etc) determine insect emergence and the possible seasonal differences, we collected emergent insects from three different lakes in South Germany, during three seasons. We searched for common patterns of insect emergence at the three lakes. Moreover, the relative contribution of insects of aquatic origin to aerial flying arthropods was assessed, with collecting aerial flying arthropods at the shore.Chironomidae constituted the highest number of emerged insects in all lakes, however different patterns of emergence occurred in each lake (unimodal vs. bimodal) with different season-dependent times for the emergence peaks (spring, summer, beginning of autumn). Aquatic insects constituted a considerable proportion (at least 17%) of the aerial flying arthropods at the shore. The variation in insect emergence was explained by water temperature, however not by other water parameters or the nutrient values. Seasonal and spatial differences in insect emergence, should be considered when investigating aquatic-terrestrial interactions and designing conservation plans. A total biomass of up to 1.8 g m−2 of emerging insects from the littoral zone of Lake Constance can enter the terrestrial system in a year. We also provide length-dry weight relationships for emerged (adult) Chironomidae. These equations are useful to estimate the dry insect biomass from length data and currently such data lack for adult aquatic insects.
科研通智能强力驱动
Strongly Powered by AbleSci AI