Machine Learning Methods for Protein Structure Prediction

人工智能 蛋白质结构预测 机器学习 计算机科学 无监督学习 支持向量机 聚类分析 人工神经网络 蛋白质结构 结构生物信息学 生物 生物化学
作者
Jianlin Cheng,Allison N. Tegge,Pierre Baldi
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:1: 41-49 被引量:102
标识
DOI:10.1109/rbme.2008.2008239
摘要

Machine learning methods are widely used in bioinformatics and computational and systems biology. Here, we review the development of machine learning methods for protein structure prediction, one of the most fundamental problems in structural biology and bioinformatics. Protein structure prediction is such a complex problem that it is often decomposed and attacked at four different levels: 1-D prediction of structural features along the primary sequence of amino acids; 2-D prediction of spatial relationships between amino acids; 3-D prediction of the tertiary structure of a protein; and 4-D prediction of the quaternary structure of a multiprotein complex. A diverse set of both supervised and unsupervised machine learning methods has been applied over the years to tackle these problems and has significantly contributed to advancing the state-of-the-art of protein structure prediction. In this paper, we review the development and application of hidden Markov models, neural networks, support vector machines, Bayesian methods, and clustering methods in 1-D, 2-D, 3-D, and 4-D protein structure predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ED应助高贵紫丝采纳,获得10
刚刚
ED应助高贵紫丝采纳,获得10
刚刚
英姑应助高贵紫丝采纳,获得10
刚刚
共享精神应助高贵紫丝采纳,获得10
刚刚
桐桐应助高贵紫丝采纳,获得10
刚刚
酷波er应助高贵紫丝采纳,获得10
刚刚
星辰大海应助否认冶游史采纳,获得10
1秒前
1秒前
虾仔哥完成签到,获得积分10
1秒前
1秒前
充电宝应助Allyyin采纳,获得10
2秒前
2秒前
znn完成签到 ,获得积分10
2秒前
3秒前
3秒前
李一帆完成签到,获得积分20
3秒前
3秒前
wh发布了新的文献求助30
4秒前
summer3moon应助高兴的平露采纳,获得10
5秒前
5秒前
6秒前
ab发布了新的文献求助10
6秒前
hao关闭了hao文献求助
7秒前
cr7发布了新的文献求助10
7秒前
虾仔哥发布了新的文献求助10
7秒前
7秒前
wangSF发布了新的文献求助10
8秒前
小鹅发布了新的文献求助10
9秒前
荆轲刺秦王完成签到,获得积分10
10秒前
大福完成签到,获得积分0
10秒前
10秒前
SYLH应助啾一口香菜采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
cc完成签到,获得积分10
14秒前
ab完成签到,获得积分10
14秒前
15秒前
大白鹅发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350