ChatGPT's innovative application in blood morphology recognition

医学 鉴定(生物学) 血液学 人工智能 医学物理学 病理 内科学 计算机科学 植物 生物
作者
Wan-Hua Yang,Yi‐Ju Yang,Tzeng‐Ji Chen
出处
期刊:Journal of The Chinese Medical Association [Ovid Technologies (Wolters Kluwer)]
被引量:8
标识
DOI:10.1097/jcma.0000000000001071
摘要

Background: Recently, the rapid advancement in generative artificial intelligence (AI) technology, such as ChatGPT-4, has sparked discussions, particularly in image recognition. Accurate results are critical for hematological diagnosis, particularly for blood morphology identification. Despite advanced hematology analyzers, reliance on professional hematopathologists for manual identification remains in cases of abnormal or rare conditions, a process prone to human subjectivity and potential errors. Consequently, this study aimed to investigate the potential of ChatGPT-4 to assist with blood morphology identification. Methods: We conducted a retrospective study using blood images obtained from the American Society of Hematology (ASH). These images comprised a range of normal and abnormal morphologies. Each sample was analyzed by expert technicians (control group) and classified using ChatGPT-4 (test group). Results: Preliminary results showed that ChatGPT-4 could identify normal blood cells with an accuracy of 88%, exceeding the accuracy of identifying abnormal blood cells at a rate of 54%. Regarding identifying abnormal cells, the accuracy of ChatGPT-4 was slightly higher than that of the manual method, which was 49.5%. Conclusion: This study shows that although generative artificial intelligence shows the potential for blood type identification, it has not yet reached the point where it can replace the professional judgment of medical staff. The results showed that ChatGPT-4 is excellent for identifying red blood cell morphology, particularly inclusion bodies. It can be used as an auxiliary tool for clinical diagnosis. However, the overall recognition accuracy must be further improved. Our study produced innovative results in this field, establishing a foundation for future studies and highlighting the potential of generative AI in aiding blood morphology recognition. Future research should focus on enhancing the effectiveness of AI to improve overall standards of medical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻薯头头发布了新的文献求助10
3秒前
李青荣发布了新的文献求助10
4秒前
香蕉觅云应助tangyuan采纳,获得10
6秒前
小二郎应助开朗的翠彤采纳,获得10
6秒前
8秒前
9秒前
10秒前
慕青应助李青荣采纳,获得10
13秒前
qqesk发布了新的文献求助10
14秒前
阿盛完成签到,获得积分10
14秒前
17秒前
zouzhao关注了科研通微信公众号
19秒前
xgx984完成签到,获得积分10
21秒前
研友_VZG7GZ应助cccyc采纳,获得10
23秒前
张萌完成签到 ,获得积分10
27秒前
积极的尔白完成签到 ,获得积分10
29秒前
科研通AI2S应助加菲丰丰采纳,获得10
29秒前
30秒前
31秒前
沉静的万天完成签到 ,获得积分10
31秒前
珍珠奶茶发布了新的文献求助10
33秒前
alex发布了新的文献求助30
34秒前
36秒前
tangyuan发布了新的文献求助10
36秒前
37秒前
生动的海露完成签到,获得积分10
38秒前
许容完成签到,获得积分10
40秒前
蓝胖子举报Minixiao求助涉嫌违规
41秒前
都是发布了新的文献求助10
42秒前
spark317发布了新的文献求助10
42秒前
852应助你好啊采纳,获得10
45秒前
火星仙人掌完成签到 ,获得积分10
45秒前
zhaogl完成签到,获得积分10
47秒前
50秒前
dannnnn完成签到,获得积分10
50秒前
Akim应助zouzhao采纳,获得10
50秒前
whutzxy完成签到,获得积分10
51秒前
52秒前
luca完成签到,获得积分10
55秒前
594778089发布了新的文献求助10
55秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043