已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Where is tea grown in the world: A robust mapping framework for agroforestry crop with knowledge graph and sentinels images

作物 农林复合经营 遥感 计算机科学 农业工程 环境科学 地理 农学 生物 工程类
作者
Yufeng Peng,Bingwen Qiu,Zhenghong Tang,Weiming Xu,Peng Yang,Wenbin Wu,Xuehong Chen,Xiaolin Zhu,Peng Zhu,Xin Zhang,Xinshuang Wang,Chengming Zhang,Laigang Wang,Mengmeng Li,Juanzhu Liang,Yingze Huang,Feifei Cheng,Jianfeng Chen,Fangzheng Wu,Zeyu Jian,Zhengrong Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:303: 114016-114016 被引量:3
标识
DOI:10.1016/j.rse.2024.114016
摘要

Tea trees (Camellia sinensis), a quintessential homestead agroforestry crop cultivated in over 60 countries, hold significant economic and social importance as a vital specialty cash crop. Accurate nationwide crop data is imperative for effective agricultural management and resource regulation. However, many regions grapple with a lack of agroforestry cash crop data, impeding sustainable development and poverty eradication, especially in economically underdeveloped countries. The large-scale mapping of tea plantations faces substantial limitations and challenges due to their sparse distribution compared to field crops, unfamiliar characteristics, and spectral confusion among various land cover types (e.g., forests, orchards, and farmlands). To address these challenges, we developed the Manual management And Phenolics substance-based Tea mapping (MAP-Tea) framework by harnessing Sentinel-1/2 time series images for automated tea plantation mapping. Tea trees, exhibiting higher phenolic content, evergreen characteristics, and multiple shoot sprouting, result in extensive canopy coverage, stable soil exposure, and radar backscatter signal interference from frequent picking activities. We developed three phenology-based indicators focusing on phenolic content, vegetation coverage, and canopy texture leveraging the temporal features of vegetation, pigments, soil, and radar backscattering. Characteristics of biochemical substance content and manual management measures were applied to tea mapping for the first time. The MAP-Tea framework successfully generated China's first updated 10 m resolution tea plantation map in 2022. It achieved an overall accuracy of 94.87% based on 16,712 reference samples, with a kappa coefficient of 0.83 and an F1 score of 85.63%. The tea trees are typically cultivated in mountainous and hilly areas with a relatively low planting density (averaging about 10%). Alpine tea trees exhibited a notably dense concentration and dominance, mainly found in regions with elevations ranging from 700 m to 2000 m and slopes between 2° to 18°. The areas with low altitudes and slopes hold the largest tea plantation area and output. As the slope increased, there was a gradual decline in the dominance of tea areas. The results suggest a good potential for the knowledge-based approaches, combining biochemical substance content and human activities, for national-scale tea plantation mapping in complex environment conditions and challenging landscapes, providing important reference significance for mapping other agroforestry crops. This study contributes significantly to advancing the achievement of the Sustainable Development Goals (SDGs) considering the crucial role that agroforestry crops play in fostering economic growth and alleviating poverty. The first 10m national Tea tree data products in China with good accuracy (ChinaTea10m) are publicly accessed at https://doi.org/10.6084/m9.figshare.25047308.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kiki完成签到 ,获得积分10
刚刚
1秒前
1秒前
香蕉觅云应助半截神经病采纳,获得10
3秒前
XU发布了新的文献求助30
3秒前
Hastur00完成签到 ,获得积分10
3秒前
小羿完成签到,获得积分10
5秒前
skskysky完成签到 ,获得积分10
5秒前
Xuhao23发布了新的文献求助10
5秒前
8秒前
Dakota完成签到,获得积分10
9秒前
10秒前
11秒前
科研通AI2S应助勇敢牛牛采纳,获得10
11秒前
深情芷完成签到,获得积分10
11秒前
cui完成签到 ,获得积分10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
浅尝离白应助欣欣子采纳,获得30
12秒前
12秒前
Xuhao23完成签到,获得积分10
13秒前
大模型应助神勇麦片采纳,获得10
15秒前
柔弱的无心完成签到 ,获得积分10
15秒前
ji发布了新的文献求助10
16秒前
16秒前
chrissylaiiii发布了新的文献求助10
17秒前
DrLee完成签到,获得积分10
17秒前
共享精神应助醒醒采纳,获得10
18秒前
自由的雪完成签到 ,获得积分10
20秒前
22秒前
缪甲烷完成签到,获得积分10
23秒前
23秒前
23秒前
26秒前
ptyz霍建华发布了新的文献求助10
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142425
求助须知:如何正确求助?哪些是违规求助? 2793350
关于积分的说明 7806409
捐赠科研通 2449622
什么是DOI,文献DOI怎么找? 1303363
科研通“疑难数据库(出版商)”最低求助积分说明 626850
版权声明 601309