Fault identification based on the KPCA-GPSO-SVM algorithm for seismic attributes in the Sihe Coal Mine, Qinshui Basin, China

支持向量机 核主成分分析 模式识别(心理学) 人工智能 地震属性 煤矿开采 主成分分析 断层(地质) 数据挖掘 计算机科学 算法 工程类 地质学 地震学 核方法 废物管理
作者
Ke Ren,Guangui Zou,Suping Peng,Hen‐Geul Yeh,Bowen Deng,Yin Ji
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-58
标识
DOI:10.1190/int-2022-0039.1
摘要

Faults are geological structures that can cause disasters and thereby affect the safety of coal mines. To achieve improved fault interpretation accuracy during 3D seismic exploration of coal mines, we propose a seismic fault identification method based on a combination of kernel principal component analysis (KPCA), genetic particle swarm optimization (GPSO) and a support vector machine (SVM). The Dongwupan area of the Sihe Coal Mine in Shanxi Province, which mainly contains small faults, is the research area, and we extract 20 types of seismic attributes. According to the median difference between fault and nonfault data, we select the 12 leading seismic attributes with differences greater than 0.1 in descending order. Considering information redundancy and the nonlinear relationships among seismic attributes, we adopt the KPCA method to reduce and optimize the selected seismic attributes, thereby effectively capturing the main information contained in the data and eliminating noise. Moreover, we introduce the GPSO algorithm to effectively optimize the SVM model parameters, and we construct a KPCA-GPSO-SVM model to classify and predict faults. Through model testing, the average fault identification accuracy of the model is 98.89%. Relative to the KPCA-PSO-SVM, PCA-GPSO-SVM and GPSO-SVM models, the accuracy is improved by 3.3%, 7.8% and 16.7%, respectively. We apply the proposed model to predict the fault distribution in the research area, and we compare the predictions to the actual exposed faults. The results indicate that the KPCA-GPSO-SVM model can suitably realize fault distribution prediction in a mining area. Moreover, compared to manual fault interpretation, the proposed method is faster, more intuitive and can better identify small faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木木完成签到,获得积分10
2秒前
科研废人发布了新的文献求助10
2秒前
石石发布了新的文献求助10
5秒前
自觉的夏蓉完成签到,获得积分20
10秒前
dolo完成签到,获得积分10
11秒前
SYLH应助泥中尘采纳,获得10
12秒前
bkagyin应助努力采纳,获得10
12秒前
12秒前
痴心冷泡茶完成签到,获得积分10
13秒前
yar应助wanghuan采纳,获得10
15秒前
JamesPei应助wanghuan采纳,获得10
15秒前
16秒前
16秒前
思源应助yinxiangyan采纳,获得10
17秒前
沧海君完成签到,获得积分10
18秒前
19秒前
journey完成签到 ,获得积分10
19秒前
doublemeat发布了新的文献求助10
20秒前
33发布了新的文献求助30
21秒前
21秒前
杜杨帆完成签到 ,获得积分10
21秒前
21秒前
22秒前
成就的芷蕾完成签到 ,获得积分10
23秒前
yar应助hhhhh采纳,获得10
24秒前
Linda发布了新的文献求助10
25秒前
25秒前
破晓星发布了新的文献求助30
27秒前
gu发布了新的文献求助10
27秒前
完美世界应助隐形白亦采纳,获得10
27秒前
29秒前
上官若男应助hi采纳,获得10
29秒前
科研通AI2S应助幻梦采纳,获得10
31秒前
31秒前
Unicorn发布了新的文献求助10
33秒前
大模型应助阿飞采纳,获得10
33秒前
阔达的水壶完成签到 ,获得积分10
34秒前
35秒前
鲨鱼的角应助科研通管家采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465415
求助须知:如何正确求助?哪些是违规求助? 3058602
关于积分的说明 9062114
捐赠科研通 2748875
什么是DOI,文献DOI怎么找? 1508182
科研通“疑难数据库(出版商)”最低求助积分说明 696871
邀请新用户注册赠送积分活动 696520