亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MUSCLE: multi-view and multi-scale attentional feature fusion for microRNA–disease associations prediction

计算机科学 图形 感知器 人工智能 网络拓扑 生物网络 小RNA 机器学习 特征(语言学) 疾病 计算生物学 人工神经网络 理论计算机科学 生物 医学 语言学 哲学 基因 生物化学 病理 操作系统
作者
Bo-Ya Ji,Haitao Zou,Li‐Wen Xu,Xiaolan Xie,Shaoliang Peng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (3)
标识
DOI:10.1093/bib/bbae167
摘要

Abstract MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA–disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SULAIMAN发布了新的文献求助10
2秒前
阿尔弗雷德完成签到 ,获得积分10
4秒前
Hayat发布了新的文献求助10
10秒前
11秒前
14秒前
16秒前
amengptsd完成签到,获得积分10
16秒前
HY发布了新的文献求助10
19秒前
小脚丫完成签到 ,获得积分10
20秒前
FMHChan完成签到,获得积分10
26秒前
宁雨歆关注了科研通微信公众号
31秒前
41秒前
46秒前
宁雨歆发布了新的文献求助10
48秒前
cwy完成签到,获得积分10
50秒前
58秒前
59秒前
模糊中正应助科研通管家采纳,获得30
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
小二郎应助小苏采纳,获得10
1分钟前
肚子圆圆的完成签到 ,获得积分10
1分钟前
研友_841rlL发布了新的文献求助10
1分钟前
忐忑的雪糕完成签到 ,获得积分10
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
小秦发布了新的文献求助10
1分钟前
研友_841rlL完成签到,获得积分10
1分钟前
1分钟前
脑洞疼应助吃嘛嘛香采纳,获得10
1分钟前
1分钟前
1分钟前
小二郎应助小秦采纳,获得10
1分钟前
fengliurencai完成签到,获得积分10
1分钟前
hank完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948687
关于积分的说明 8541803
捐赠科研通 2624574
什么是DOI,文献DOI怎么找? 1436326
科研通“疑难数据库(出版商)”最低求助积分说明 665874
邀请新用户注册赠送积分活动 651796