DE-RGBD SLAM: Enhancing Static Feature Point Selection in RGB-D Visual SLAM Using Depth Information

人工智能 计算机视觉 RGB颜色模型 计算机科学 点(几何) 特征(语言学) 选择(遗传算法) 同时定位和映射 特征选择 模式识别(心理学) 数学 几何学 机器人 移动机器人 语言学 哲学
作者
Moudong Wu,Qingchun Zheng,Wenpeng Ma,Peihao Zhu,Bin Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada056
摘要

Abstract Feature point extraction plays a key role in visual simultaneous localization and mapping (SLAM) systems. And it remains a major challenge to accurately select static feature points in a complex dynamic environment. To address this issue, this paper proposes an RGB-D SLAM method, referred to as DE-RGBD SLAM, which optimizes feature selection by integrating depth information and effectively utilizes depth data and multi-view geometric information to achieve localization and navigation for mobile robots in dynamic environments. Firstly, the method analyzes prominent feature regions in the image based on colour and depth information captured by an RGB-D camera. It sets adaptive FAST corner detection thresholds according to the grayscale information of these regions while masking other areas. Next, the method obtains in-depth information on the detected feature points in the current frame. It combines their pixel coordinates in the image coordinate system to determine the presence of redundant feature points. Notably, the method can detect some dynamic feature points between consecutive frames. Subsequently, in the camera coordinate system, the method compares the depth information of feature points in the depth image with the epipolar depth estimates derived from the essential matrix to determine whether the features are static and eliminate dynamic feature points. This approach significantly enhances the reliability of static feature points. Finally, the accuracy and robustness of the proposed method are validated through experiments conducted on the public TUM dataset and real-world scenarios compared to state-of-the-art visual SLAM systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒲公英发布了新的文献求助10
1秒前
campus完成签到,获得积分10
1秒前
Vanessa_531发布了新的文献求助20
2秒前
小蘑菇应助加减乘除采纳,获得10
2秒前
2秒前
听话的绿真完成签到,获得积分20
4秒前
5秒前
科研通AI2S应助fyh采纳,获得10
5秒前
5秒前
ZengJuan发布了新的文献求助10
7秒前
哈哈哈完成签到 ,获得积分10
8秒前
11秒前
11秒前
梨理栗发布了新的文献求助10
12秒前
小番茄完成签到 ,获得积分10
12秒前
12秒前
龙玄泽应助天天开心采纳,获得10
12秒前
Owen应助是猪毛啊采纳,获得30
13秒前
NexusExplorer应助luole采纳,获得10
13秒前
草上飞完成签到 ,获得积分10
14秒前
MS发布了新的文献求助10
16秒前
Joseph_Kerr发布了新的文献求助10
17秒前
JoJo发布了新的文献求助10
17秒前
19秒前
小桑桑发布了新的文献求助10
20秒前
小番茄关注了科研通微信公众号
20秒前
领导范儿应助银匠采纳,获得10
20秒前
20秒前
20秒前
22秒前
星辰大海应助俞思含采纳,获得10
24秒前
完美世界应助脂蛋白抗原采纳,获得10
24秒前
25秒前
26秒前
26秒前
辉常幸运发布了新的文献求助10
26秒前
思源应助明亮的代灵采纳,获得10
27秒前
ZZJ完成签到,获得积分10
28秒前
怡然的煜城完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551910
求助须知:如何正确求助?哪些是违规求助? 3128345
关于积分的说明 9377313
捐赠科研通 2827348
什么是DOI,文献DOI怎么找? 1554303
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714834