亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Based Assessment of Built Environment From Satellite Images and Cardiometabolic Disease Prevalence

医学 建筑环境 人口普查 疾病 普查区 环境卫生 美国社区调查 人口 病理 工程类 土木工程
作者
Zhuo Chen,Jean‐Eudes Dazard,Yassin Khalifa,Issam Motairek,Catherine Kreatsoulas,Sanjay Rajagopalan,Sadeer Al‐Kindi
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (6): 556-556 被引量:4
标识
DOI:10.1001/jamacardio.2024.0749
摘要

Importance Built environment plays an important role in development of cardiovascular disease. Large scale, pragmatic evaluation of built environment has been limited owing to scarce data and inconsistent data quality. Objective To investigate the association between image-based built environment and the prevalence of cardiometabolic disease in urban cities. Design, Setting, and Participants This cross-sectional study used features extracted from Google satellite images (GSI) to measure the built environment and link them with prevalence of cardiometabolic disease. Convolutional neural networks, light gradient-boosting machines, and activation maps were used to assess the association with health outcomes and identify feature associations with coronary heart disease (CHD), stroke, and chronic kidney disease (CKD). The study obtained aerial images from GSI covering census tracts in 7 cities (Cleveland, Ohio; Fremont, California; Kansas City, Missouri; Detroit, Michigan; Bellevue, Washington; Brownsville, Texas; and Denver, Colorado). The study used census tract-level data from the US Centers for Disease Control and Prevention’s 500 Cities project. The data were originally collected from the Behavioral Risk Factor Surveillance System that surveyed people 18 years and older across the country. Analyses were conducted from February to December 2022. Exposures GSI images of built environment and cardiometabolic disease prevalence. Main Outcomes and Measures Census tract-level estimated prevalence of CHD, stroke, and CKD based on image-based built environment features. Results The study obtained 31 786 aerial images from GSI covering 789 census tracts. Built environment features extracted from GSI using machine learning were associated with prevalence of CHD ( R 2 = 0.60), stroke ( R 2 = 0.65), and CKD ( R 2 = 0.64). The model performed better at distinguishing differences between cardiometabolic prevalence between cities than within cities (eg, highest within-city R 2 = 0.39 vs between-city R 2 = 0.64 for CKD). Addition of GSI features both outperformed and improved the model that only included age, sex, race, income, education, and composite indices for social determinants of health ( R 2 = 0.83 vs R 2 = 0.76 for CHD; P <.001). Activation maps from the features revealed certain health-related built environment such as roads, highways, and railroads and recreational facilities such as amusement parks, arenas, and baseball parks. Conclusions and Relevance In this cross-sectional study, a significant portion of cardiometabolic disease prevalence was associated with GSI-based built environment using convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQ完成签到,获得积分10
29秒前
dahai发布了新的文献求助10
51秒前
58秒前
dahai完成签到,获得积分20
1分钟前
小马甲应助老毕登采纳,获得10
1分钟前
傻傻的哈密瓜完成签到,获得积分10
1分钟前
1分钟前
Magali发布了新的文献求助10
1分钟前
老毕登完成签到,获得积分10
1分钟前
1分钟前
1分钟前
老毕登发布了新的文献求助10
1分钟前
曾经的彩虹完成签到,获得积分10
1分钟前
Liangstar完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
不安的墨镜应助勤劳影子采纳,获得10
2分钟前
欣慰蚂蚁完成签到,获得积分10
2分钟前
不安的墨镜应助勤劳影子采纳,获得10
3分钟前
3分钟前
CodeCraft应助勤劳影子采纳,获得10
3分钟前
jfc完成签到 ,获得积分10
4分钟前
4分钟前
zhangchen123发布了新的文献求助10
4分钟前
zoie0809完成签到,获得积分10
4分钟前
nanali19完成签到,获得积分10
4分钟前
暴走的烤包子完成签到 ,获得积分0
4分钟前
小蘑菇应助zhangchen123采纳,获得10
4分钟前
4分钟前
花花521发布了新的文献求助10
5分钟前
迅速的月光完成签到 ,获得积分10
5分钟前
噗噗完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
qqdm完成签到 ,获得积分10
6分钟前
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
共享精神应助喵喵喵采纳,获得10
8分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3275098
求助须知:如何正确求助?哪些是违规求助? 2914160
关于积分的说明 8371562
捐赠科研通 2584930
什么是DOI,文献DOI怎么找? 1407289
科研通“疑难数据库(出版商)”最低求助积分说明 656863
邀请新用户注册赠送积分活动 637320