Collaborative processing and data optimization of environmental perception technologies for autonomous vehicles

实时计算 计算机科学 传感器融合 调度(生产过程) 数据处理 冗余(工程) 编码(社会科学) 模拟 人工智能 工程类 运营管理 数学 统计 操作系统
作者
Haina Song,Shengpei Zhou,Zhenting Chang,Yuejiang Su,Xiaosong Liu,Jingfeng Yang
出处
期刊:Assembly Automation [Emerald (MCB UP)]
卷期号:41 (3): 283-291 被引量:10
标识
DOI:10.1108/aa-01-2021-0007
摘要

Purpose Autonomous driving depends on the collection, processing and analysis of environmental information and vehicle information. Environmental perception and processing are important prerequisite for the safety of self-driving of vehicles; it involves road boundary detection, vehicle detection, pedestrian detection using sensors such as laser rangefinder, video camera, vehicle borne radar, etc. Design/methodology/approach Subjected to various environmental factors, the data clock information is often out of sync because of different data acquisition frequency, which leads to the difficulty in data fusion. In this study, according to practical requirements, a multi-sensor environmental perception collaborative method was first proposed; then, based on the principle of target priority, large-scale priority, moving target priority and difference priority, a multi-sensor data fusion optimization algorithm based on convolutional neural network was proposed. Findings The average unload scheduling delay of the algorithm for test data before and after optimization under different network transmission rates. It can be seen that with the improvement of network transmission rate and processing capacity, the unload scheduling delay decreased after optimization and the performance of the test results is the closest to the optimal solution indicating the excellent performance of the optimization algorithm and its adaptivity to different environments. Originality/value In this paper, the results showed that the proposed method significantly improved the redundancy and fault tolerance of the system thus ensuring fast and correct decision-making during driving.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
薛子谦发布了新的文献求助10
2秒前
3秒前
木木发布了新的文献求助10
4秒前
cao完成签到,获得积分10
6秒前
6秒前
博林大师完成签到,获得积分10
7秒前
8秒前
8秒前
猫Li发布了新的文献求助10
9秒前
miurny完成签到,获得积分10
9秒前
叶子完成签到,获得积分20
9秒前
顾矜应助明亮的以蓝采纳,获得10
10秒前
南漂完成签到,获得积分10
10秒前
11秒前
11秒前
一由天完成签到,获得积分10
11秒前
zho发布了新的文献求助10
11秒前
gxr发布了新的文献求助10
14秒前
木木完成签到,获得积分10
14秒前
十七发布了新的文献求助10
14秒前
16秒前
韦觅松发布了新的文献求助10
17秒前
17秒前
oliv完成签到 ,获得积分10
17秒前
wanci应助赵赵1203采纳,获得10
18秒前
kimi发布了新的文献求助10
18秒前
心灵美大侠完成签到,获得积分10
18秒前
JamesPei应助haku采纳,获得10
18秒前
襄阳完成签到,获得积分10
18秒前
19秒前
卓矢完成签到 ,获得积分10
21秒前
Tr发布了新的文献求助10
22秒前
22秒前
Xieyusen发布了新的文献求助10
23秒前
Makkki发布了新的文献求助10
24秒前
石头关注了科研通微信公众号
25秒前
bkagyin应助Q123ba叭采纳,获得10
25秒前
爱笑的冷风完成签到 ,获得积分10
26秒前
小马甲应助廾匸采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248499
求助须知:如何正确求助?哪些是违规求助? 2891839
关于积分的说明 8268971
捐赠科研通 2559871
什么是DOI,文献DOI怎么找? 1388724
科研通“疑难数据库(出版商)”最低求助积分说明 650815
邀请新用户注册赠送积分活动 627782