十溴二苯醚
化学
多溴联苯醚
光降解
二苯醚
激进的
水溶液
吸附
光化学
环境化学
生物累积
乙醚
反应速率常数
腐植酸
键裂
有机化学
动力学
光催化
阻燃剂
污染物
催化作用
肥料
物理
量子力学
作者
Ruijuan Qu,Chenguang Li,Xiaoxue Pan,Xiaolan Zeng,Jiaoqin Liu,Qingguo Huang,Jiao Feng,Zunyao Wang
出处
期刊:Water Research
[Elsevier BV]
日期:2017-11-01
卷期号:125: 114-122
被引量:84
标识
DOI:10.1016/j.watres.2017.08.033
摘要
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants which have received considerable attention due to their global distribution, bioaccumulation potential, environmental persistence, and possible toxic effects. In this work, the photodegradation of decabromodiphenyl ether (BDE-209) in aqueous system was investigated by preloading it on the surface of various solid matrices. After 6 h of Xe lamp irradiation, almost complete degradation of BDE-209 was observed on silica gel (SG), with much slower degradation occurring in other adsorbents. The degradation of BDE-209 on SG sample followed pseudo-first-order kinetics, and the observed reaction rate constant was decreased by lowering pH, adding humic acid and increasing the initial BDE-209 concentration. In addition to direct photolysis, BDE-209 could be oxidized by hydroxyl radicals generated from SG, as confirmed by the electron paramagnetic resonance (EPR) technology. Product analysis showed that BDE-209 was mainly decomposed into lower brominated PBDEs, polybrominated dibenzofurans (PBDFs), hydroxylated PBDEs (OH-PBDEs), hydroxylated PBDFs (OH-PBDFs), bromophenols and bromide ions. Thus, consecutive debromination, intramolecular elimination of HBr, hydroxyl addition and the cleavage of ether bond were proposed as the degradation pathways. This study may help understanding the photochemical transformation of solid surface adsorbed BDE-209 in natural surface waters, which is important to evaluate the environmental fate of PBDEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI