Forecasting the urbanization dynamics in the Seoul metropolitan area using a long short-term memory–based model

城市化 大都市区 人口 政府(语言学) 人口增长 地理 城市规划 经济增长 经济地理学 发展经济学 经济 工程类 土木工程 社会学 哲学 人口学 语言学 考古
作者
Changyeon Lee,Jaekyung Lee,Sungjin Park
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE Publishing]
卷期号:50 (2): 453-468 被引量:5
标识
DOI:10.1177/23998083221118002
摘要

Over the past half century, the Seoul metropolitan area (SMA) has experienced rapid urbanization. Urban development and population growth within the SMA have caused various problems, such as a lack of affordable housing, traffic congestion, and socioeconomic inequality between the SMA and the rest of the country. As a solution, growth control was adopted, but it resulted in increasing housing prices within Seoul. In late 2018, skyrocketing housing prices forced Seoul’s government to abandon its growth-control policy and announce large-scale “new-town” projects planned outside of the city’s urban growth boundary. The primary purpose of this research is to predict future urbanization dynamics by utilizing the long short-term memory (LSTM)–based prediction model. The secondary purpose is to identify the influential driving factors in urbanization that can help policy makers develop evidence-based, informed strategies. To predict future urbanization’s spatial patterns in the SMA, LSTM models have been estimated under two scenarios: (A) assuming that current urbanization trends and contributing factors will remain consistent in the future and (B) considering new development plans’ impacts. A comparison of the modeling results indicates that the government-driven new-town projects will help urbanize 55.8% more land by 2030. The variable influence analysis also reveals that strong growth-control measures may be necessary for areas with higher employment and homeownership rates to control rapid urbanization. However, housing supply and economic growth–related policies in Seoul’s suburbs would help attract the city’s population to the outskirts. The LSTM-based model yields an accurate and reliable spatial prediction in the form of visual maps, and its graphic results will assist policy makers greatly in developing effective strategies for smart urban growth management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junjie发布了新的文献求助10
刚刚
研友_V8R5VZ发布了新的文献求助10
1秒前
1秒前
田様应助拽小拽采纳,获得10
1秒前
认真生活完成签到,获得积分10
1秒前
少侠不是菜鸟完成签到,获得积分10
2秒前
专注雁桃发布了新的文献求助10
3秒前
3秒前
fafamimireredo完成签到,获得积分10
3秒前
Wrong完成签到,获得积分10
3秒前
CodeCraft应助风趣的惜灵采纳,获得10
4秒前
香蕉寒梅完成签到,获得积分10
4秒前
阳光海云完成签到,获得积分10
4秒前
zhu完成签到,获得积分10
5秒前
搜集达人应助Glitter采纳,获得10
5秒前
通莲完成签到,获得积分10
5秒前
susan完成签到 ,获得积分10
5秒前
tough发布了新的文献求助10
6秒前
阿斯披粼完成签到,获得积分10
6秒前
hhhhhhmt完成签到,获得积分10
6秒前
7秒前
7秒前
小周小周完成签到,获得积分10
7秒前
xiaohanzai88完成签到,获得积分10
7秒前
虎了吧唧完成签到,获得积分10
7秒前
陌路完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
ding应助czd采纳,获得10
9秒前
蔡雨岑完成签到,获得积分10
9秒前
苦行僧完成签到 ,获得积分10
10秒前
科研通AI5应助qq采纳,获得10
10秒前
搜集达人应助lingkai采纳,获得10
11秒前
汉堡包应助闪闪的映冬采纳,获得10
11秒前
悦耳心情完成签到,获得积分10
11秒前
sns八丘完成签到,获得积分20
11秒前
WNL完成签到,获得积分10
11秒前
呆鸥发布了新的文献求助30
11秒前
蔡雨岑发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Avialinguistics:The Study of Language for Aviation Purposes 270
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3687512
求助须知:如何正确求助?哪些是违规求助? 3237633
关于积分的说明 9832436
捐赠科研通 2949642
什么是DOI,文献DOI怎么找? 1617457
邀请新用户注册赠送积分活动 764276
科研通“疑难数据库(出版商)”最低求助积分说明 738425