Question Classification for Intelligent Question Answering: A Comprehensive Survey

计算机科学 答疑 情报检索 瓶颈 个性化 人工智能 数据科学 万维网 嵌入式系统
作者
Hao Sun,Shu Wang,Yunqiang Zhu,Wenmin Yuan,Zhiqiang Zou
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:12 (10): 415-415 被引量:1
标识
DOI:10.3390/ijgi12100415
摘要

In the era of GeoAI, Geospatial Intelligent Question Answering (GeoIQA) represents the ultimate pursuit for everyone. Even generative AI systems like ChatGPT-4 struggle to handle complex GeoIQA. GeoIQA is domain complex IQA, which aims at understanding and answering questions accurately. The core of IQA is the Question Classification (QC), which mainly contains four types: content-based, template-based, calculation-based and method-based classification. These IQA_QC frameworks, however, struggle to be compatible and integrate with each other, which may be the bottleneck restricting the substantial improvement of IQA performance. To address this problem, this paper reviewed recent advances on IQA with the focus on solving question classification and proposed a comprehensive IQA_QC framework for understanding user query intention more accurately. By introducing the basic idea of the IQA mechanism, a three-level question classification framework consisting of essence, form and implementation is put forward which could cover the complexity and diversity of geographical questions. In addition, the proposed IQA_QC framework revealed that there are still significant deficiencies in the IQA evaluation metrics in the aspect of broader dimensions, which led to low answer performance, functional performance and systematic performance. Through the comparisons, we find that the proposed IQA_QC framework can fully integrate and surpass the existing classification. Although our proposed classification can be further expanded and improved, we firmly believe that this comprehensive IQA_QC framework can effectively help researchers in both semantic parsing and question querying processes. Furthermore, the IQA_QC framework can also provide a systematic question-and-answer pair/library categorization system for AIGCs, such as GPT-4. In conclusion, whether it is explicit GeoAI or implicit GeoAI, the IQA_QC can play a pioneering role in providing question-and-answer types in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fsw发布了新的文献求助10
1秒前
天天快乐应助木cheng采纳,获得10
1秒前
顾矜应助光之晨曦采纳,获得10
2秒前
科研通AI5应助邱彗星采纳,获得10
3秒前
Savitr发布了新的文献求助10
3秒前
大气摩托发布了新的文献求助10
3秒前
3秒前
wsg发布了新的文献求助10
3秒前
木目耶耶耶完成签到 ,获得积分10
4秒前
木衣木衣完成签到 ,获得积分10
4秒前
耳朵暴富富完成签到,获得积分10
4秒前
小刘应助年糕采纳,获得10
4秒前
阿宝发布了新的文献求助10
4秒前
科研小李完成签到 ,获得积分10
5秒前
大苏打发布了新的文献求助30
5秒前
小蜜蜂发布了新的文献求助10
6秒前
6秒前
Jehuw完成签到,获得积分10
6秒前
简单刺猬完成签到,获得积分10
6秒前
7秒前
千幻完成签到,获得积分10
7秒前
8秒前
jay完成签到,获得积分10
8秒前
8秒前
ding应助大气摩托采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得30
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
小背包发布了新的文献求助10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445