A chatbot based question and answer system for the auxiliary diagnosis of chronic diseases based on large language model

聊天机器人 计算机科学 自然语言处理 人工智能 万维网
作者
Sainan Zhang,Jisung Song
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-67429-4
摘要

In recent years, artificial intelligence has made remarkable strides, improving various aspects of our daily lives. One notable application is in intelligent chatbots that use deep learning models. These systems have shown tremendous promise in the medical sector, enhancing healthcare quality, treatment efficiency, and cost-effectiveness. However, their role in aiding disease diagnosis, particularly chronic conditions, remains underexplored. Addressing this issue, this study employs large language models from the GPT series, in conjunction with deep learning techniques, to design and develop a diagnostic system targeted at chronic diseases. Specifically, performed transfer learning and fine-tuning on the GPT-2 model, enabling it to assist in accurately diagnosing 24 common chronic diseases. To provide a user-friendly interface and seamless interactive experience, we further developed a dialog-based interface, naming it Chat Ella. This system can make precise predictions for chronic diseases based on the symptoms described by users. Experimental results indicate that our model achieved an accuracy rate of 97.50% on the validation set, and an area under the curve (AUC) value reaching 99.91%. Moreover, conducted user satisfaction tests, which revealed that 68.7% of participants approved of Chat Ella, while 45.3% of participants found the system made daily medical consultations more convenient. It can rapidly and accurately assess a patient's condition based on the symptoms described and provide timely feedback, making it of significant value in the design of medical auxiliary products for household use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福咖啡豆完成签到,获得积分10
2秒前
英俊的铭应助wzzz采纳,获得10
2秒前
2秒前
赘婿应助Zbzb采纳,获得10
3秒前
小蘑菇应助拉长的从灵采纳,获得30
4秒前
4秒前
Orange应助jjj采纳,获得10
5秒前
桐桐应助风趣的含海采纳,获得10
7秒前
水博士发布了新的文献求助10
7秒前
Yogurt完成签到,获得积分10
8秒前
wanci应助ZL05采纳,获得10
8秒前
Henry_Long完成签到,获得积分10
8秒前
Hello应助zipi采纳,获得10
9秒前
情怀应助锣大炮采纳,获得10
9秒前
10秒前
CodeCraft应助土豆不吃鱼采纳,获得10
10秒前
uy发布了新的文献求助10
10秒前
机智张完成签到,获得积分10
11秒前
一家人应助博宇采纳,获得10
13秒前
14秒前
共享精神应助一只滚滚猫采纳,获得10
14秒前
星辰大海应助青年才俊采纳,获得10
14秒前
田様应助无辜善愁采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
西子阳发布了新的文献求助10
17秒前
Hello应助青瓜采纳,获得10
17秒前
17秒前
17秒前
17秒前
Steven完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055707
求助须知:如何正确求助?哪些是违规求助? 2712333
关于积分的说明 7431052
捐赠科研通 2357290
什么是DOI,文献DOI怎么找? 1248745
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144