A chatbot based question and answer system for the auxiliary diagnosis of chronic diseases based on large language model

聊天机器人 计算机科学 自然语言处理 人工智能 万维网
作者
Sainan Zhang,Jisung Song
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-67429-4
摘要

In recent years, artificial intelligence has made remarkable strides, improving various aspects of our daily lives. One notable application is in intelligent chatbots that use deep learning models. These systems have shown tremendous promise in the medical sector, enhancing healthcare quality, treatment efficiency, and cost-effectiveness. However, their role in aiding disease diagnosis, particularly chronic conditions, remains underexplored. Addressing this issue, this study employs large language models from the GPT series, in conjunction with deep learning techniques, to design and develop a diagnostic system targeted at chronic diseases. Specifically, performed transfer learning and fine-tuning on the GPT-2 model, enabling it to assist in accurately diagnosing 24 common chronic diseases. To provide a user-friendly interface and seamless interactive experience, we further developed a dialog-based interface, naming it Chat Ella. This system can make precise predictions for chronic diseases based on the symptoms described by users. Experimental results indicate that our model achieved an accuracy rate of 97.50% on the validation set, and an area under the curve (AUC) value reaching 99.91%. Moreover, conducted user satisfaction tests, which revealed that 68.7% of participants approved of Chat Ella, while 45.3% of participants found the system made daily medical consultations more convenient. It can rapidly and accurately assess a patient's condition based on the symptoms described and provide timely feedback, making it of significant value in the design of medical auxiliary products for household use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福书琴完成签到 ,获得积分10
刚刚
Wonder发布了新的文献求助10
1秒前
2秒前
2秒前
桃桃发布了新的文献求助20
3秒前
成就的安阳完成签到,获得积分10
3秒前
完美耦合发布了新的文献求助10
3秒前
大司马发布了新的文献求助10
4秒前
4秒前
6秒前
ya发布了新的文献求助10
8秒前
Jasper应助不吃豆皮采纳,获得10
9秒前
大司马完成签到,获得积分10
9秒前
辰溪发布了新的文献求助20
9秒前
汉堡包应助zhao采纳,获得10
9秒前
10秒前
阿珩发布了新的文献求助10
11秒前
12秒前
13秒前
780完成签到,获得积分10
13秒前
anderson1738发布了新的文献求助10
14秒前
深情安青应助grisco采纳,获得10
14秒前
14秒前
15秒前
臭蚊子你个饿死鬼完成签到 ,获得积分10
16秒前
Chestnut发布了新的文献求助10
17秒前
葳蕤完成签到,获得积分10
17秒前
18秒前
18秒前
Johnchill发布了新的文献求助10
18秒前
18秒前
米粒儿发布了新的文献求助10
19秒前
无花果应助Y123采纳,获得10
20秒前
不知百念发布了新的文献求助10
21秒前
王闷闷发布了新的文献求助50
21秒前
21秒前
完美耦合完成签到,获得积分10
21秒前
22秒前
Cynthia发布了新的文献求助200
22秒前
辣辣辣发布了新的文献求助20
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706