From fat to fire: The lipid–inflammasome connection

炎症体 上睑下垂 细胞生物学 生物 脂质信号 半胱氨酸蛋白酶1 脂质代谢 炎症 信号转导 神经科学 免疫学 生物化学
作者
Paras Anand
出处
期刊:Immunological Reviews [Wiley]
标识
DOI:10.1111/imr.13403
摘要

Summary Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase‐1, the secretion of pro‐inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well‐studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen‐associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4‐phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid‐inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Amanda柏采纳,获得10
刚刚
ruandb完成签到,获得积分10
刚刚
King完成签到,获得积分10
刚刚
酷波er应助Humab668采纳,获得10
刚刚
yu完成签到,获得积分10
1秒前
xiaosui完成签到 ,获得积分10
1秒前
爆米花应助小锡兵采纳,获得10
2秒前
dxz完成签到,获得积分10
2秒前
2秒前
meme完成签到,获得积分10
2秒前
3秒前
3秒前
JamesPei应助果果采纳,获得10
3秒前
哔哔完成签到,获得积分10
3秒前
甜甜千兰完成签到 ,获得积分10
3秒前
红书包发布了新的文献求助10
4秒前
小可爱完成签到,获得积分10
4秒前
健康的犀牛完成签到,获得积分10
5秒前
6秒前
abc完成签到,获得积分10
6秒前
sss2021完成签到,获得积分10
7秒前
万能图书馆应助好好干活采纳,获得10
7秒前
ax完成签到,获得积分10
7秒前
轻歌水越发布了新的文献求助10
7秒前
8秒前
小锡兵完成签到,获得积分20
8秒前
changjiaren完成签到,获得积分10
8秒前
酷酷飞烟完成签到,获得积分10
9秒前
调皮的凝旋完成签到,获得积分10
9秒前
niu完成签到,获得积分10
10秒前
10秒前
爬得飞快的仲文博完成签到,获得积分10
10秒前
不配.应助seattle采纳,获得10
10秒前
科研通AI2S应助ROGER采纳,获得10
10秒前
夜雨完成签到,获得积分10
11秒前
sikh发布了新的文献求助20
11秒前
kehan发布了新的文献求助10
11秒前
11秒前
苏大强完成签到,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147019
求助须知:如何正确求助?哪些是违规求助? 2798354
关于积分的说明 7828125
捐赠科研通 2454959
什么是DOI,文献DOI怎么找? 1306544
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565