计算机科学
图形
阿尔茨海默病
人工智能
变压器
神经科学
疾病
医学
心理学
理论计算机科学
内科学
工程类
电压
电气工程
作者
Peng He,Zhan Shi,Yaping Cui,Ruyan Wang,Dapeng Wu
标识
DOI:10.1016/j.compbiomed.2024.108762
摘要
Alzheimer's disease (AD) is a neurodegenerative disease accompanied by cognitive impairment. Early diagnosis is crucial for the timely treatment and intervention of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) records the temporal dynamics and spatial dependency in the brain, which have been utilized for automatically diagnosis of AD in the community. Existing approaches of AD diagnosis using rs-fMRI only assess functional connectivity, ignoring the spatiotemporal dependency mining of rs-fMRI. In addition, it is difficult to increase diagnosis accuracy due to the shortage of rs-fMRI sample and the poor anti-noise ability of model. To deal with these problems, this paper proposes a novel approach for the automatic diagnosis of AD, namely spatiotemporal graph transformer network (STGTN). The proposed STGTN can effectively extract spatiotemporal features of rs-fMRI. Furthermore, to solve the sample-limited problem and to improve the anti-noise ability of the proposed model, an adversarial training strategy is adopted for the proposed STGTN to generate adversarial examples (AEs) and augment training samples with AEs. Experimental results indicate that the proposed model achieves the classification accuracy of 92.58%, and 85.27% with the adversarial training strategy for AD vs. normal control (NC), early mild cognitive impairment (eMCI) vs. late mild cognitive impairment (lMCI) respectively, outperforming the state-of-the-art methods. Besides, the spatial attention coefficients reflected from the designed model reveal the importance of brain connections under different classification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI