氧化应激
医学
丙二醛
有氧运动
老化
内科学
方差分析
谷胱甘肽
内分泌学
骨重建
生理学
化学
生物化学
酶
作者
José Alfredo Sierra-Ramírez,Lourdes Saucedo-Bueno,Ana Lilia García‐Hernández,A. Martínez‐Dávalos,Camilo Rodríguez-López,María Elisa Drago-Serrano,Marycarmen Godínez‐Victoria
标识
DOI:10.1016/j.jbiomech.2022.111035
摘要
Exercise encourages active and healthy aging, maintaining functional and physical capabilities. This study aimed to assess the effects of a long-term moderate aerobic exercise protocol on bone microarchitecture and fragility associated with chronic inflammation and oxidative stress in aging. Male BALB/c mice (n = 10 per group) underwent a moderate exercise protocol from 13 weeks to 27 (adulthood age) or 108 weeks of age (elderly age) and were then sacrificed. Age-match sedentary mice were included as a control group. Serum cortisol concentrations were determined by chemiluminescent immunoassay, C-reactive protein (CRP) by a turbidimetric assay, advanced glycation end-products (AGEs) and malondialdehyde (MDA) by fluorescent spectroscopy, and total glutathione (GSH) by colorimetric method. The right femur was dissected formorphometric and densitometricanalysis bycomputerized microtomography (µCT),and biomechanical properties were assessed usinga three-point bending device. Musclefrom the same extremitywas obtained to determine relative mRNA expression ofpro-inflammatory cytokines (TNF-α and IL-6) by RT-qPCR.Statistical differences were evaluated by two-way ANOVA and Holm-Sidak method post hoc with P < 0.05. In elderly mice, moderate exercise increased glutathione levels and microarchitecture complexity but decreased bone fragility and oxidative stress markers, cortisol, and pro-inflammatory cytokines. In conclusion, these results suggest a strong link between a pro-inflammatory state and age-conditioned oxidative stress on bone quality. Thus, on a human scale, moderate aerobic exercise may improve bone quality during aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI