表面工程
材料科学
纳米技术
电化学
范围(计算机科学)
电极
电催化剂
比表面积
催化作用
计算机科学
化学
生物化学
物理化学
程序设计语言
作者
Tianze Wu,Ming‐Yong Han,Zhichuan J. Xu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-06-15
卷期号:16 (6): 8531-8539
被引量:74
标识
DOI:10.1021/acsnano.2c04603
摘要
The efficiency of electrocatalytic reactions has been continuously improved in recent years due to the great effort in the development of electrocatalysts. A popular strategy is engineering the size of electrocatalysts for better electrochemical performance and lower cost. Nanosized electrocatalysts with high specific surface area have been widely used in state-of-the-art electrochemical devices such as fuel cells. From an engineering aspect, nanosizing electrocatalysts increases the surface area of the electrode and improves the electrode/device performance. Beyond an engineering scope, this perspective highlights the size effects of certain scientific fundamentals in electrocatalytic reactions. The paper summarizes the representative examples in studying the size effects of electrocatalysts and sheds light on the change of intrinsic properties of electrocatalysts caused by the size variation. The size effects of electrocatalysts should be investigated in terms of both engineering and fundamental aspects; that is, the observed activity change is more than a result of surface area variation, and it is interesting to investigate the link between the intrinsic activity and the properties of the catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI