Lymph Node Metastasis Prediction From Whole Slide Images With Transformer-Guided Multiinstance Learning and Knowledge Transfer

计算机科学 判别式 人工智能 变压器 模式识别(心理学) 特征提取 机器学习 物理 量子力学 电压
作者
Wang Zhi-hua,Lequan Yu,Xin Ding,Xuehong Liao,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2777-2787 被引量:27
标识
DOI:10.1109/tmi.2022.3171418
摘要

The gold standard for diagnosing lymph node metastasis of papillary thyroid carcinoma is to analyze the whole slide histopathological images (WSIs). Due to the large size of WSIs, recent computer-aided diagnosis approaches adopt the multi-instance learning (MIL) strategy and the key part is how to effectively aggregate the information of different instances (patches). In this paper, a novel transformer-guided framework is proposed to predict lymph node metastasis from WSIs, where we incorporate the transformer mechanism to improve the accuracy from three different aspects. First, we propose an effective transformer-based module for discriminative patch feature extraction, including a lightweight feature extractor with a pruned transformer (Tiny-ViT) and a clustering-based instance selection scheme. Next, we propose a new Transformer-MIL module to capture the relationship of different discriminative patches with sparse distribution on WSIs and better nonlinearly aggregate patch-level features into the slide-level prediction. Considering that the slide-level annotation is relatively limited to training a robust Transformer-MIL, we utilize the pathological relationship between the primary tumor and its lymph node metastasis and develop an effective attention-based mutual knowledge distillation (AMKD) paradigm. Experimental results on our collected WSI dataset demonstrate the efficiency of the proposed Transformer-MIL and attention-based knowledge distillation. Our method outperforms the state-of-the-art methods by over 2.72% in AUC (area under the curve).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihn完成签到,获得积分10
1秒前
张宁波完成签到,获得积分10
1秒前
99giddens举报中午求助涉嫌违规
2秒前
稞小弟完成签到,获得积分10
2秒前
yjchenf完成签到 ,获得积分10
3秒前
5秒前
Joanna完成签到,获得积分10
7秒前
哇咔咔发布了新的文献求助10
9秒前
舒云易烟完成签到,获得积分10
10秒前
A晨完成签到 ,获得积分10
11秒前
12秒前
Axeliar完成签到,获得积分10
15秒前
何劲松完成签到,获得积分10
17秒前
好样的发布了新的文献求助10
19秒前
19秒前
鄙人不善奔跑完成签到,获得积分10
20秒前
XYZ发布了新的文献求助10
22秒前
wenhuanwenxian完成签到 ,获得积分10
25秒前
哇咔咔完成签到 ,获得积分10
27秒前
luo完成签到 ,获得积分10
28秒前
博林大师完成签到,获得积分10
28秒前
man完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
34秒前
Kk发布了新的文献求助10
37秒前
42秒前
yhyhyhyh完成签到,获得积分10
42秒前
默默向雪完成签到,获得积分10
43秒前
风筝与亭完成签到 ,获得积分10
46秒前
菜菜子发布了新的文献求助10
48秒前
笨笨洙关注了科研通微信公众号
51秒前
思源应助顶顶小明采纳,获得10
51秒前
51秒前
科研通AI2S应助三三四采纳,获得10
55秒前
56秒前
56秒前
菜菜子完成签到,获得积分20
58秒前
JJ完成签到,获得积分20
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023