Artificial intelligence: a systematic review of methods and applications in hospitality and tourism

款待 旅游 独创性 酒店管理学 酒店业 营销 计算机科学 数据科学 服务(商务) 知识管理 人工智能 管理科学 业务 社会学 工程类 定性研究 社会科学 政治学 法学
作者
Zohreh Doborjeh,Nigel Hemmington,Maryam Doborjeh,Nikola Kasabov
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald (MCB UP)]
卷期号:34 (3): 1154-1176 被引量:131
标识
DOI:10.1108/ijchm-06-2021-0767
摘要

Purpose Several review articles have been published within the Artificial Intelligence (AI) literature that have explored a range of applications within the tourism and hospitality sectors. However, how efficiently the applied AI methods and algorithms have performed with respect to the type of applications and the multimodal sets of data domains have not yet been reviewed. Therefore, this paper aims to review and analyse the established AI methods in hospitality/tourism, ranging from data modelling for demand forecasting, tourism destination and behaviour pattern to enhanced customer service and experience. Design/methodology/approach The approach was to systematically review the relationship between AI methods and hospitality/tourism through a comprehensive literature review of papers published between 2010 and 2021. In total, 146 articles were identified and then critically analysed through content analysis into themes, including “AI methods” and “AI applications”. Findings The review discovered new knowledge in identifying AI methods concerning the settings and available multimodal data sets in hospitality and tourism. Moreover, AI applications fostering the tourism/hospitality industries were identified. It also proposes novel personalised AI modelling development for smart tourism platforms to precisely predict tourism choice behaviour patterns. Practical implications This review paper offers researchers and practitioners a broad understanding of the proper selection of AI methods that can potentially improve decision-making and decision-support in the tourism/hospitality industries. Originality/value This paper contributes to the tourism/hospitality literature with an interdisciplinary approach that reflects on theoretical/practical developments for data collection, data analysis and data modelling using AI-driven technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sylaerrrr24发布了新的文献求助10
刚刚
xpd发布了新的文献求助10
1秒前
无花果应助setmefree采纳,获得10
2秒前
juziyaya应助setmefree采纳,获得10
2秒前
CodeCraft应助setmefree采纳,获得10
2秒前
田様应助setmefree采纳,获得10
2秒前
脑洞疼应助setmefree采纳,获得10
2秒前
XFF发布了新的文献求助10
2秒前
Puokn完成签到,获得积分10
3秒前
juziyaya应助贺飞风采纳,获得30
3秒前
3秒前
3秒前
4秒前
4秒前
shania发布了新的文献求助10
5秒前
6秒前
Riggle G完成签到,获得积分10
6秒前
阿盛发布了新的文献求助10
8秒前
9秒前
欣喜成仁发布了新的文献求助10
9秒前
kong完成签到 ,获得积分20
10秒前
飞云完成签到,获得积分10
11秒前
打打应助57采纳,获得10
11秒前
11秒前
11秒前
欣慰的冰珍关注了科研通微信公众号
12秒前
SciGPT应助zz采纳,获得10
12秒前
烟花应助朝朝采纳,获得10
14秒前
kiki发布了新的文献求助10
14秒前
14秒前
SciGPT应助自不惊扰采纳,获得10
14秒前
Ning发布了新的文献求助10
14秒前
15秒前
闪闪初蓝完成签到,获得积分10
15秒前
16秒前
奋斗寒天发布了新的文献求助10
17秒前
端庄擎汉发布了新的文献求助10
20秒前
21秒前
林子关注了科研通微信公众号
22秒前
开心应助蓝天蓝采纳,获得10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226