Accelerating FPGA Prototyping through Predictive Model-Based HLS Design Space Exploration

现场可编程门阵列 仿真 专用集成电路 计算机科学 设计空间探索 高级合成 嵌入式系统 超大规模集成 FPGA原型 计算机体系结构 上市时间 快速成型 过程(计算) 地点和路线 工程类 程序设计语言 机械工程 经济 经济增长
作者
Shuangnan Liu,Francis C. M. Lau,Benjamin Carrión Schäfer
标识
DOI:10.1145/3316781.3317754
摘要

One of the advantages of High-Level Synthesis (HLS), also called C-based VLSI-design, over traditional RT-level VLSI design flows, is that multiple micro-architectures of unique area vs. performance can be automatically generated by setting different synthesis options, typically in the form of synthesis directives specified as pragmas in the source code. This design space exploration (DSE) is very time-consuming and can easily take multiple days for complex designs. At the same time, and because of the complexity in designing large ASICs, verification teams now routinely make use of emulation and prototyping to test the circuit before the silicon is taped out. This also allows the embedded software designers to start their work earlier in the design process and thus, further reducing the Turn-Around-Times (TAT). In this work, we present a method to automatically re-optimize ASIC designs specified as behavioral descriptions for HLS to FPGAs for emulation and prototyping, based on the observation that synthesis directives that lead to efficient micro-architectures for ASICs, do not directly translate into optimal micro-architectures in FPGAs. This implies that the HLS DSE process would have to be completely repeated for the target FPGA. To avoid this, this work presents a predictive model-based method that takes as inputs the results of an ASIC HLS DSE and automatically, without the need to re-explore the behavioral description, finds the Pareto-optimal micro-architectures for the target FPGA. Experimental results comparing our predictive-model based method vs. completely re-exploring the search space show that our proposed method works well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sume24完成签到,获得积分10
刚刚
1秒前
白熊发布了新的文献求助20
1秒前
丘比特应助耿耿采纳,获得10
2秒前
自然的绿兰发布了新的文献求助150
2秒前
bingqing发布了新的文献求助10
3秒前
3秒前
4秒前
在水一方应助搞怪十八采纳,获得10
4秒前
4秒前
XIXI完成签到,获得积分20
4秒前
4秒前
张瑜发布了新的文献求助10
5秒前
小蘑菇应助第七个星球采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
霍师傅发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Galaxy发布了新的文献求助10
9秒前
9秒前
9秒前
自觉凌蝶完成签到 ,获得积分10
9秒前
9秒前
tojobbb发布了新的文献求助10
10秒前
CN00016发布了新的文献求助10
10秒前
10秒前
affff完成签到 ,获得积分10
10秒前
10秒前
10秒前
Lucas应助wz采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
追风舞尘完成签到,获得积分20
12秒前
秀儿发布了新的文献求助10
12秒前
13秒前
沐易发布了新的文献求助10
13秒前
今后应助uncle采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996