Accelerating FPGA Prototyping through Predictive Model-Based HLS Design Space Exploration

现场可编程门阵列 仿真 专用集成电路 计算机科学 设计空间探索 高级合成 嵌入式系统 超大规模集成 FPGA原型 计算机体系结构 上市时间 快速成型 过程(计算) 地点和路线 工程类 程序设计语言 机械工程 经济 经济增长
作者
Shuangnan Liu,Francis C. M. Lau,Benjamin Carrión Schäfer
标识
DOI:10.1145/3316781.3317754
摘要

One of the advantages of High-Level Synthesis (HLS), also called C-based VLSI-design, over traditional RT-level VLSI design flows, is that multiple micro-architectures of unique area vs. performance can be automatically generated by setting different synthesis options, typically in the form of synthesis directives specified as pragmas in the source code. This design space exploration (DSE) is very time-consuming and can easily take multiple days for complex designs. At the same time, and because of the complexity in designing large ASICs, verification teams now routinely make use of emulation and prototyping to test the circuit before the silicon is taped out. This also allows the embedded software designers to start their work earlier in the design process and thus, further reducing the Turn-Around-Times (TAT). In this work, we present a method to automatically re-optimize ASIC designs specified as behavioral descriptions for HLS to FPGAs for emulation and prototyping, based on the observation that synthesis directives that lead to efficient micro-architectures for ASICs, do not directly translate into optimal micro-architectures in FPGAs. This implies that the HLS DSE process would have to be completely repeated for the target FPGA. To avoid this, this work presents a predictive model-based method that takes as inputs the results of an ASIC HLS DSE and automatically, without the need to re-explore the behavioral description, finds the Pareto-optimal micro-architectures for the target FPGA. Experimental results comparing our predictive-model based method vs. completely re-exploring the search space show that our proposed method works well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lingling发布了新的文献求助10
刚刚
豆芽完成签到,获得积分10
刚刚
DoIt完成签到,获得积分10
刚刚
Mathea应助ttyj采纳,获得10
1秒前
diadia完成签到,获得积分10
1秒前
cheeries发布了新的文献求助10
1秒前
2秒前
浮游应助lyy采纳,获得10
2秒前
舒适橘子关注了科研通微信公众号
2秒前
dfghjkl发布了新的文献求助10
2秒前
wickedzz完成签到,获得积分0
2秒前
LiDaYang完成签到,获得积分10
3秒前
3秒前
猪猪hero发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
852应助清脆泥猴桃采纳,获得10
4秒前
hjw发布了新的文献求助10
4秒前
5秒前
5秒前
小马甲应助bochen采纳,获得10
5秒前
热心市民蚂蚱殿下完成签到,获得积分10
5秒前
5秒前
6秒前
无敌霸王花给舒心雅山的求助进行了留言
6秒前
洁净的士晋完成签到,获得积分10
6秒前
6秒前
7秒前
老驴拉磨完成签到 ,获得积分10
7秒前
Jennie发布了新的文献求助10
8秒前
9秒前
开朗代亦发布了新的文献求助10
9秒前
远航发布了新的文献求助10
9秒前
fantexi113发布了新的文献求助10
9秒前
汉堡包应助大神装采纳,获得10
9秒前
西蜀海棠完成签到,获得积分10
10秒前
鲍里斯瓦格完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203058
求助须知:如何正确求助?哪些是违规求助? 4382742
关于积分的说明 13646505
捐赠科研通 4240027
什么是DOI,文献DOI怎么找? 2326295
邀请新用户注册赠送积分活动 1323935
关于科研通互助平台的介绍 1275919