Accelerating FPGA Prototyping through Predictive Model-Based HLS Design Space Exploration

现场可编程门阵列 仿真 专用集成电路 计算机科学 设计空间探索 高级合成 嵌入式系统 超大规模集成 FPGA原型 计算机体系结构 上市时间 快速成型 过程(计算) 地点和路线 工程类 程序设计语言 经济 机械工程 经济增长
作者
Shuangnan Liu,Francis C. M. Lau,Benjamin Carrión Schäfer
标识
DOI:10.1145/3316781.3317754
摘要

One of the advantages of High-Level Synthesis (HLS), also called C-based VLSI-design, over traditional RT-level VLSI design flows, is that multiple micro-architectures of unique area vs. performance can be automatically generated by setting different synthesis options, typically in the form of synthesis directives specified as pragmas in the source code. This design space exploration (DSE) is very time-consuming and can easily take multiple days for complex designs. At the same time, and because of the complexity in designing large ASICs, verification teams now routinely make use of emulation and prototyping to test the circuit before the silicon is taped out. This also allows the embedded software designers to start their work earlier in the design process and thus, further reducing the Turn-Around-Times (TAT). In this work, we present a method to automatically re-optimize ASIC designs specified as behavioral descriptions for HLS to FPGAs for emulation and prototyping, based on the observation that synthesis directives that lead to efficient micro-architectures for ASICs, do not directly translate into optimal micro-architectures in FPGAs. This implies that the HLS DSE process would have to be completely repeated for the target FPGA. To avoid this, this work presents a predictive model-based method that takes as inputs the results of an ASIC HLS DSE and automatically, without the need to re-explore the behavioral description, finds the Pareto-optimal micro-architectures for the target FPGA. Experimental results comparing our predictive-model based method vs. completely re-exploring the search space show that our proposed method works well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铲子发布了新的文献求助10
2秒前
MQRR发布了新的文献求助10
2秒前
甜蜜雪曼应助Liou采纳,获得100
2秒前
2秒前
深情安青应助终澈采纳,获得10
2秒前
lili完成签到,获得积分10
3秒前
港岛妹妹应助actor2006采纳,获得10
3秒前
3秒前
打打应助勿忘9451采纳,获得10
3秒前
情怀应助wwwwww采纳,获得10
4秒前
washy发布了新的文献求助10
4秒前
lululemon发布了新的文献求助30
5秒前
劲秉应助完美的海秋采纳,获得50
5秒前
活力听白发布了新的文献求助10
6秒前
桐桐应助积极的千易采纳,获得10
8秒前
NeXt_best完成签到,获得积分10
8秒前
skye关注了科研通微信公众号
9秒前
今后应助Fine采纳,获得10
9秒前
大个应助马牛采纳,获得10
9秒前
Lucas应助nenoaowu采纳,获得10
9秒前
汉堡包应助nenoaowu采纳,获得30
9秒前
彭于晏应助nenoaowu采纳,获得10
9秒前
完美世界应助nenoaowu采纳,获得10
9秒前
三月聚粮应助nenoaowu采纳,获得10
9秒前
Akim应助nenoaowu采纳,获得30
9秒前
11秒前
Bonnienuit完成签到 ,获得积分10
11秒前
11秒前
wanci应助Jy采纳,获得10
11秒前
www发布了新的文献求助50
11秒前
小学生的练习簿完成签到,获得积分10
12秒前
13秒前
13秒前
NexusExplorer应助孟韩采纳,获得10
14秒前
勿忘9451发布了新的文献求助10
15秒前
washy完成签到,获得积分10
15秒前
17秒前
18秒前
skye发布了新的文献求助30
18秒前
朴实老虎发布了新的文献求助10
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264819
求助须知:如何正确求助?哪些是违规求助? 2904784
关于积分的说明 8331584
捐赠科研通 2575093
什么是DOI,文献DOI怎么找? 1399658
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296