Fast A3RL: Aesthetics-Aware Adversarial Reinforcement Learning for Image Cropping

对抗制 深度学习 人工神经网络 嵌入 卷积神经网络
作者
Debang Li,Huikai Wu,Junge Zhang,Kaiqi Huang
出处
期刊:IEEE Transactions on Image Processing 卷期号:28 (10): 5105-5120 被引量:14
标识
DOI:10.1109/tip.2019.2914360
摘要

Image cropping aims at improving the quality of images by removing unwanted outer areas, which is widely used in the photography and printing industry. Most of the previous cropping methods that do not need bounding box supervision rely on the sliding window mechanism. The sliding window method results in fixed aspect ratios and limits the shape of the cropping region. Moreover, the sliding window method usually produces lots of candidates on the input image, which is very time-consuming. Motivated by these challenges, we formulate image cropping as a sequential decision-making process and propose a reinforcement learning-based framework to address this problem, namely, Fast Aesthetics-Aware Adversarial Reinforcement Learning ( Fast A3RL). Particularly, the proposed method develops an aesthetics-aware reward function that is dedicated for image cropping. Similar to human’s decision-making process, we use a comprehensive state representation, including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The adversarial learning process is also applied during the training stage. The proposed method is evaluated on several popular cropping datasets, in which the images are unseen during training. The experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Assmpsit发布了新的文献求助10
1秒前
后陡门的夏天完成签到 ,获得积分10
8秒前
8秒前
胡胡发布了新的文献求助10
12秒前
一树春风完成签到,获得积分20
12秒前
zwj发布了新的文献求助10
12秒前
圆圈应助可爱以冬采纳,获得10
13秒前
NexusExplorer应助可爱以冬采纳,获得10
13秒前
建成发布了新的文献求助10
13秒前
16秒前
东方既白应助KYRIAL采纳,获得10
17秒前
22秒前
aniver完成签到 ,获得积分10
22秒前
仲夜安发布了新的文献求助10
22秒前
情怀应助一树春风采纳,获得10
26秒前
yujinglu发布了新的文献求助10
27秒前
HIT_WXY完成签到,获得积分10
27秒前
东方既白应助KYRIAL采纳,获得10
27秒前
美丽易云发布了新的文献求助10
29秒前
长情寒凝完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
31秒前
汉堡包应助老伯unit采纳,获得10
33秒前
Charlie完成签到 ,获得积分10
33秒前
34秒前
奥里给完成签到 ,获得积分10
34秒前
wanci应助朴实的百招采纳,获得10
35秒前
37秒前
萧水白应助KYRIAL采纳,获得10
38秒前
czl12138发布了新的文献求助10
39秒前
39秒前
41秒前
41秒前
41秒前
kyk完成签到,获得积分10
41秒前
正直涔完成签到 ,获得积分10
41秒前
独特煎蛋完成签到,获得积分10
42秒前
幽默尔蓉发布了新的文献求助10
42秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291