亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast A3RL: Aesthetics-Aware Adversarial Reinforcement Learning for Image Cropping

对抗制 深度学习 人工神经网络 嵌入 卷积神经网络
作者
Debang Li,Huikai Wu,Junge Zhang,Kaiqi Huang
出处
期刊:IEEE Transactions on Image Processing 卷期号:28 (10): 5105-5120 被引量:14
标识
DOI:10.1109/tip.2019.2914360
摘要

Image cropping aims at improving the quality of images by removing unwanted outer areas, which is widely used in the photography and printing industry. Most of the previous cropping methods that do not need bounding box supervision rely on the sliding window mechanism. The sliding window method results in fixed aspect ratios and limits the shape of the cropping region. Moreover, the sliding window method usually produces lots of candidates on the input image, which is very time-consuming. Motivated by these challenges, we formulate image cropping as a sequential decision-making process and propose a reinforcement learning-based framework to address this problem, namely, Fast Aesthetics-Aware Adversarial Reinforcement Learning ( Fast A3RL). Particularly, the proposed method develops an aesthetics-aware reward function that is dedicated for image cropping. Similar to human’s decision-making process, we use a comprehensive state representation, including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The adversarial learning process is also applied during the training stage. The proposed method is evaluated on several popular cropping datasets, in which the images are unseen during training. The experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with related methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助读书的时候采纳,获得10
12秒前
13秒前
小白加油完成签到 ,获得积分10
18秒前
LucyMartinez发布了新的文献求助10
19秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
Hello应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
田様应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
51秒前
搜集达人应助读书的时候采纳,获得10
52秒前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
CipherSage应助读书的时候采纳,获得10
1分钟前
1分钟前
LucyMartinez发布了新的文献求助20
1分钟前
FFFFF发布了新的文献求助10
2分钟前
在水一方应助读书的时候采纳,获得10
2分钟前
FFFFF关注了科研通微信公众号
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
丘比特应助读书的时候采纳,获得10
2分钟前
Jasper应助读书的时候采纳,获得10
3分钟前
TBHP完成签到,获得积分10
3分钟前
科研通AI6.1应助LucyMartinez采纳,获得10
3分钟前
su完成签到 ,获得积分20
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739820
求助须知:如何正确求助?哪些是违规求助? 5389900
关于积分的说明 15339972
捐赠科研通 4882170
什么是DOI,文献DOI怎么找? 2624212
邀请新用户注册赠送积分活动 1572930
关于科研通互助平台的介绍 1529776