Fast A3RL: Aesthetics-Aware Adversarial Reinforcement Learning for Image Cropping

对抗制 深度学习 人工神经网络 嵌入 卷积神经网络
作者
Debang Li,Huikai Wu,Junge Zhang,Kaiqi Huang
出处
期刊:IEEE Transactions on Image Processing 卷期号:28 (10): 5105-5120 被引量:14
标识
DOI:10.1109/tip.2019.2914360
摘要

Image cropping aims at improving the quality of images by removing unwanted outer areas, which is widely used in the photography and printing industry. Most of the previous cropping methods that do not need bounding box supervision rely on the sliding window mechanism. The sliding window method results in fixed aspect ratios and limits the shape of the cropping region. Moreover, the sliding window method usually produces lots of candidates on the input image, which is very time-consuming. Motivated by these challenges, we formulate image cropping as a sequential decision-making process and propose a reinforcement learning-based framework to address this problem, namely, Fast Aesthetics-Aware Adversarial Reinforcement Learning ( Fast A3RL). Particularly, the proposed method develops an aesthetics-aware reward function that is dedicated for image cropping. Similar to human’s decision-making process, we use a comprehensive state representation, including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The adversarial learning process is also applied during the training stage. The proposed method is evaluated on several popular cropping datasets, in which the images are unseen during training. The experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with related methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
零零完成签到,获得积分10
1秒前
茶凉人散发布了新的文献求助10
2秒前
zmmm完成签到,获得积分10
2秒前
宇智波张三完成签到,获得积分10
2秒前
火箭完成签到,获得积分10
3秒前
3秒前
FashionBoy应助Jayson采纳,获得10
4秒前
充电宝应助热情笑旋采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
晓磊发布了新的文献求助30
8秒前
8秒前
Qwering应助Linyi采纳,获得30
9秒前
9秒前
11秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
小先生发布了新的文献求助10
19秒前
欣喜安蕾完成签到,获得积分10
20秒前
21秒前
贪玩若剑完成签到 ,获得积分10
21秒前
大懒虫发布了新的文献求助10
21秒前
22秒前
在水一方应助追寻的从云采纳,获得10
22秒前
22秒前
萌only发布了新的文献求助10
23秒前
23秒前
24秒前
Singularity应助一只小原采纳,获得10
24秒前
阿斯顿完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
zjc发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777833
求助须知:如何正确求助?哪些是违规求助? 5635925
关于积分的说明 15446909
捐赠科研通 4909743
什么是DOI,文献DOI怎么找? 2641858
邀请新用户注册赠送积分活动 1589781
关于科研通互助平台的介绍 1544290