Multi-fidelity Data Aggregation using Convolutional Neural Networks

计算机科学 忠诚 卷积神经网络 可扩展性 插值(计算机图形学) 领域(数学) 人工神经网络 卷积(计算机科学) 人工智能 算法 数据挖掘 机器学习 图像(数学) 数学 数据库 电信 纯数学
作者
Jie Chen,Yi Gao,Yongming Liu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:391: 114490-114490 被引量:18
标识
DOI:10.1016/j.cma.2021.114490
摘要

Multi-fidelity data exist in almost every engineering and science discipline, which can be from simulation, experiments, and a hybrid form. High fidelity data are usually associated with higher accuracy and expense (e.g., high resolution experimental testing or finer scale simulation), while low-fidelity data are on the opposite side in terms of the accuracy and cost. Multi-fidelity data aggregation (MDA) in this study refers to the process of combining two or multiple sources of different fidelity data to have a high accuracy estimation and low computational cost. MDA has a wide range of application in engineering and science, such as multiscale simulation, multi-resolution imaging, and hybrid simulation-testing. This paper presents a novel framework named Multi-fidelity Data Aggregation using Convolutional Neural Networks (MDA-CNN) for multi-fidelity modeling. The MDA-CNN architecture has three components: multi-fidelity data compiling, multi-fidelity perceptive field and convolution, and deep neural network for mapping. This framework captures and utilizes implicit relationships between any high-fidelity datum and all available low-fidelity data using a defined local perceptive field and convolution. Most existing strategies rely on the collocation method and interpolation, which focuses on the single point relationship. The proposed method has several unique benefits. First, the proposed framework treats the multi-fidelity data as image data and processes them using CNN, which is very scalable to high dimensional data with more than two fidelities. Second, the flexibility of nonlinear mapping in neural network facilitates the multi-fidelity aggregation and does not need to assume specific relationships among multiple fidelities. Third, the proposed framework does not assume that multi-fidelity data are at the same order or from the same physical mechanisms (e.g., assumptions are needed for some error estimation-based multi-fidelity model). Thus, the proposed method can handle data aggregation from multiple sources across different scales, such as different order derivatives and other correlated phenomenon data in a single framework. The proposed MDA-CNN is validated using extensive numerical examples and experimental data with multi-source and multi-fidelity data. Discussions are given to illustrate the benefits and limitations of the proposed framework. Conclusions and future work are presented based on the observations in the current study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓夜蓉完成签到,获得积分10
刚刚
ss发布了新的文献求助10
刚刚
苗苗鱼发布了新的文献求助10
1秒前
天际线完成签到,获得积分20
1秒前
深情安青应助sylnd126采纳,获得10
1秒前
澈千子完成签到,获得积分10
1秒前
1秒前
赵大炮发布了新的文献求助10
2秒前
uiwh发布了新的文献求助10
2秒前
Yang发布了新的文献求助10
2秒前
烟花应助服部平次采纳,获得10
2秒前
3秒前
3秒前
3秒前
852应助daifei采纳,获得10
3秒前
vadfdfb发布了新的文献求助10
3秒前
科研通AI5应助等待的太阳采纳,获得10
3秒前
聪慧的千亦完成签到,获得积分10
3秒前
yyx发布了新的文献求助10
4秒前
4秒前
Orange应助熬夜的桃子采纳,获得10
4秒前
星辰大海应助不吃橘子采纳,获得10
4秒前
香蕉觅云应助安谢采纳,获得10
4秒前
wxi发布了新的文献求助10
5秒前
5秒前
慕青应助火日立采纳,获得10
6秒前
英姑应助theThreeMagi采纳,获得10
6秒前
阔达的花卷完成签到 ,获得积分10
7秒前
打打发布了新的文献求助10
7秒前
所所应助椰子采纳,获得10
7秒前
7秒前
7秒前
9秒前
disciple发布了新的文献求助10
9秒前
9秒前
az发布了新的文献求助10
10秒前
zhiwei发布了新的文献求助10
11秒前
11秒前
11秒前
平常映雁完成签到,获得积分10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339