Building extraction from high-resolution multispectral and SAR images using a boundary-link multimodal fusion network

计算机科学 合成孔径雷达 人工智能 分割 多光谱图像 计算机视觉 RGB颜色模型 遥感 特征提取 模式识别(心理学) 地质学
作者
Zhe Zhao,Boya Zhao,Yuanfeng Wu,Zhonghua He,Lianru Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/jstars.2025.3525709
摘要

Automatically extracting buildings with high precision from remote sensing images is crucial for various applications. Due to their distinct imaging modalities and complementary characteristics, optical and synthetic aperture radar (SAR) images serve as primary data sources for this task. We propose a novel Boundary-Link Multimodal Fusion Network (BLMFNet) for joint semantic segmentation to leverage the information in these images. An initial building extraction result is obtained from the multimodal fusion network, followed by refinement using building boundaries. The model achieves high-precision building delineation by leveraging building boundary and semantic information from optical and SAR images. It distinguishes buildings from the background in complex environments, such as dense urban areas or regions with mixed vegetation, particularly when small buildings lack distinct texture or color features. We conducted experiments using the MSAW dataset (RGBNIR and SAR data) and DFC track2 datasets (RGB and SAR data). The results indicate that our model significantly enhances extraction accuracy and improves building boundary delineation. The intersection over union (IoU) metric is 2.5% to 3.5% higher than that of other multimodal joint segmentation methods. The code is available at: https://github.com/tianyamokeZZ/BLMFNet

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
3秒前
6秒前
niNe3YUE应助zhoumaoyuan采纳,获得10
8秒前
10秒前
12秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
13秒前
Jenny发布了新的文献求助10
14秒前
fzh发布了新的文献求助10
17秒前
17秒前
18秒前
21秒前
KYTYYDS发布了新的文献求助10
22秒前
HanluMa完成签到 ,获得积分10
22秒前
fzh完成签到,获得积分10
26秒前
Jenny完成签到,获得积分10
28秒前
伟立完成签到,获得积分10
28秒前
35秒前
36秒前
然12138完成签到 ,获得积分10
36秒前
香蕉觅云应助SnownS采纳,获得10
36秒前
川荣李奈完成签到 ,获得积分10
40秒前
xinbowey发布了新的文献求助10
40秒前
火星上向珊完成签到,获得积分10
43秒前
45秒前
柳条儿完成签到,获得积分10
45秒前
如意幻枫完成签到,获得积分10
49秒前
50秒前
50秒前
渔婆发布了新的文献求助10
51秒前
53秒前
风趣的泥猴桃完成签到 ,获得积分10
54秒前
54秒前
zgsjymysmyy发布了新的文献求助30
55秒前
fuchao完成签到,获得积分10
55秒前
牧谷发布了新的文献求助10
56秒前
好吃的火龙果完成签到 ,获得积分10
57秒前
天边发布了新的文献求助10
58秒前
东方越彬发布了新的文献求助10
59秒前
赘婿应助sunny采纳,获得10
59秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566