Building extraction from high-resolution multispectral and SAR images using a boundary-link multimodal fusion network

计算机科学 合成孔径雷达 人工智能 分割 多光谱图像 计算机视觉 RGB颜色模型 遥感 特征提取 模式识别(心理学) 地质学
作者
Zhe Zhao,Boya Zhao,Yuanfeng Wu,Zhonghua He,Lianru Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/jstars.2025.3525709
摘要

Automatically extracting buildings with high precision from remote sensing images is crucial for various applications. Due to their distinct imaging modalities and complementary characteristics, optical and synthetic aperture radar (SAR) images serve as primary data sources for this task. We propose a novel Boundary-Link Multimodal Fusion Network (BLMFNet) for joint semantic segmentation to leverage the information in these images. An initial building extraction result is obtained from the multimodal fusion network, followed by refinement using building boundaries. The model achieves high-precision building delineation by leveraging building boundary and semantic information from optical and SAR images. It distinguishes buildings from the background in complex environments, such as dense urban areas or regions with mixed vegetation, particularly when small buildings lack distinct texture or color features. We conducted experiments using the MSAW dataset (RGBNIR and SAR data) and DFC track2 datasets (RGB and SAR data). The results indicate that our model significantly enhances extraction accuracy and improves building boundary delineation. The intersection over union (IoU) metric is 2.5% to 3.5% higher than that of other multimodal joint segmentation methods. The code is available at: https://github.com/tianyamokeZZ/BLMFNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风华正茂完成签到,获得积分10
1秒前
康康完成签到 ,获得积分10
3秒前
柒z完成签到,获得积分10
5秒前
赘婿应助momo采纳,获得10
9秒前
油点小鳄完成签到,获得积分20
12秒前
13秒前
13秒前
桐桐应助wish采纳,获得10
14秒前
15秒前
桐桐应助百十余采纳,获得10
18秒前
义气如萱发布了新的文献求助10
18秒前
18秒前
19秒前
小二郎应助KM比比采纳,获得10
20秒前
不能吃了发布了新的文献求助10
20秒前
李健的粉丝团团长应助LJJ采纳,获得10
21秒前
22秒前
23秒前
体贴绝音发布了新的文献求助10
23秒前
24秒前
丘比特应助sakegeda采纳,获得10
26秒前
27秒前
wish发布了新的文献求助10
27秒前
不能吃了完成签到,获得积分10
28秒前
28秒前
29秒前
31秒前
好滴捏发布了新的文献求助10
33秒前
33秒前
pyt完成签到,获得积分10
34秒前
35秒前
英俊的铭应助不安的紫翠采纳,获得10
36秒前
37秒前
情怀应助SherlockHe采纳,获得10
37秒前
37秒前
39秒前
LJJ发布了新的文献求助10
40秒前
百十余发布了新的文献求助10
41秒前
43秒前
Neo完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173