已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building extraction from high-resolution multispectral and SAR images using a boundary-link multimodal fusion network

计算机科学 合成孔径雷达 人工智能 分割 多光谱图像 计算机视觉 RGB颜色模型 遥感 特征提取 模式识别(心理学) 地质学
作者
Zhe Zhao,Boya Zhao,Yuanfeng Wu,Zhonghua He,Lianru Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/jstars.2025.3525709
摘要

Automatically extracting buildings with high precision from remote sensing images is crucial for various applications. Due to their distinct imaging modalities and complementary characteristics, optical and synthetic aperture radar (SAR) images serve as primary data sources for this task. We propose a novel Boundary-Link Multimodal Fusion Network (BLMFNet) for joint semantic segmentation to leverage the information in these images. An initial building extraction result is obtained from the multimodal fusion network, followed by refinement using building boundaries. The model achieves high-precision building delineation by leveraging building boundary and semantic information from optical and SAR images. It distinguishes buildings from the background in complex environments, such as dense urban areas or regions with mixed vegetation, particularly when small buildings lack distinct texture or color features. We conducted experiments using the MSAW dataset (RGBNIR and SAR data) and DFC track2 datasets (RGB and SAR data). The results indicate that our model significantly enhances extraction accuracy and improves building boundary delineation. The intersection over union (IoU) metric is 2.5% to 3.5% higher than that of other multimodal joint segmentation methods. The code is available at: https://github.com/tianyamokeZZ/BLMFNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
顾矜应助海水有点甜采纳,获得10
刚刚
3秒前
3秒前
niuniu发布了新的文献求助30
5秒前
5秒前
9秒前
10秒前
11秒前
秦波发布了新的文献求助10
14秒前
众生平等发布了新的文献求助10
14秒前
jz完成签到,获得积分10
15秒前
笨笨的花生完成签到,获得积分10
15秒前
踏实的傲白完成签到 ,获得积分10
17秒前
十八发布了新的文献求助10
18秒前
19秒前
众生平等完成签到,获得积分10
20秒前
糯米饭完成签到 ,获得积分10
21秒前
NexusExplorer应助haisiaa采纳,获得10
22秒前
几酝发布了新的文献求助10
22秒前
NexusExplorer应助niuniu采纳,获得10
23秒前
dd关注了科研通微信公众号
23秒前
期刊应助十八采纳,获得20
24秒前
25秒前
慶1驳回了CAOHOU应助
26秒前
秦波完成签到,获得积分10
26秒前
xiaolang2004完成签到,获得积分10
27秒前
27秒前
28秒前
30秒前
小镇青年发布了新的文献求助10
31秒前
32秒前
32秒前
爱吃饼干的土拨鼠完成签到,获得积分10
33秒前
33秒前
嗨是完成签到,获得积分10
33秒前
34秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190