ASOptimizer: Optimizing antisense oligonucleotides through deep learning for IDO1 gene regulation

寡核苷酸 计算生物学 吲哚胺2,3-双加氧酶 芳香烃受体 生物 计算机科学 基因 化学 生物信息学 转录因子 生物化学 色氨酸 氨基酸
作者
Gyeongjo Hwang,Mincheol Kwon,Dongjin Seo,Dae Hoon Kim,Daehwan Lee,Ki‐Won Lee,Eunyoung Kim,Mingeun Kang,Jin‐Hyeob Ryu
出处
期刊:Molecular therapy. Nucleic acids [Elsevier]
卷期号:35 (2): 102186-102186 被引量:1
标识
DOI:10.1016/j.omtn.2024.102186
摘要

Recent studies have highlighted the effectiveness of using antisense oligonucleotides (ASOs) for cellular RNA regulation, including targets that are considered undruggable; however, manually designing optimal ASO sequences can be labor intensive and time consuming, which potentially limits their broader application. To address this challenge, we introduce a platform, the ASOptimizer, a deep-learning-based framework that efficiently designs ASOs at a low cost. This platform not only selects the most efficient mRNA target sites but also optimizes the chemical modifications for enhanced performance. Indoleamine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by depleting tryptophan and producing kynurenine, leading to immunosuppression through the aryl-hydrocarbon receptor (Ahr) pathway within the tumor microenvironment. We used ASOptimizer to identify ASOs that target IDO1 mRNA as potential cancer therapeutics. Our methodology consists of two stages: sequence engineering and chemical engineering. During the sequence-engineering stage, we optimized and predicted ASO sequences that could target IDO1 mRNA efficiently. In the chemical-engineering stage, we further refined these ASOs to enhance their inhibitory activity while reducing their potential cytotoxicity. In conclusion, our research demonstrates the potential of ASOptimizer for identifying ASOs with improved efficacy and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
传奇3应助LeoBay采纳,获得20
4秒前
所所应助lhr采纳,获得10
7秒前
小稻草人发布了新的文献求助10
7秒前
8秒前
勤奋弋完成签到,获得积分10
8秒前
Miaka发布了新的文献求助10
9秒前
11秒前
失眠芒果完成签到,获得积分10
14秒前
格瑞格完成签到,获得积分10
14秒前
愉快的宛儿完成签到,获得积分20
15秒前
XMUh发布了新的文献求助10
15秒前
xiaodeng发布了新的文献求助10
15秒前
16秒前
慕青应助自觉香旋采纳,获得10
16秒前
勿明完成签到,获得积分10
17秒前
SciGPT应助姜起蛟采纳,获得10
19秒前
20秒前
21秒前
21秒前
jevon应助JimmyY采纳,获得10
22秒前
Miaka完成签到,获得积分10
23秒前
乐乐应助yifan21采纳,获得10
23秒前
Weiyu完成签到,获得积分10
24秒前
北冥有鱼发布了新的文献求助30
24秒前
优秀笑寒完成签到,获得积分10
24秒前
光盐完成签到,获得积分10
24秒前
ssss完成签到,获得积分10
25秒前
26秒前
27秒前
ssss发布了新的文献求助10
28秒前
28秒前
自觉香旋完成签到,获得积分20
29秒前
我的南方发布了新的文献求助10
31秒前
qing1245发布了新的文献求助10
32秒前
1122完成签到,获得积分10
33秒前
彭于晏应助MorningStar采纳,获得10
33秒前
我是老大应助南佳采纳,获得10
34秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277